Summary

专为分子回收而设计:一种褐宁衍生的半芳烃生物基聚合物

Published: November 30, 2020
doi:

Summary

这里介绍了对循环材料经济采取闭环方法的一个例子。整个可持续循环由生物基半芳烃聚酯设计,通过聚合、去聚合,然后重新聚合,其产量或最终特性仅略有变化。

Abstract

化学可回收生物聚合物的发展为追求循环经济提供了机遇。化学可回收生物聚合物在使用阶段后的处置阶段积极努力解决聚合物材料问题。本文对生物基半芳烃聚酯的生产进行了描述和可视化,这种聚酯完全可以从木质素等生物量中提取。本文中描述的聚合物聚氨酯具有与某些常用塑料(如 PET)相似的热性能。我们开发了一种绿色克诺维纳格尔反应,它可以有效地产生芳香醛和马洛尼克酸的单体。这种反应已被证明是可扩展的,并且具有非常低的计算电子因子。这些以利格诺植物化学物质为起点的聚酯显示出高效的分子回收利用,损失最小。聚酯聚(二氢酸)(聚S)是这些半芳香聚酯的示例,并描述了聚合、去聚合和再聚合。

Introduction

与聚合物废物的焚烧相比,化学回收提供了回收单体的可能性。化学回收是聚合物材料技术寿命结束时的一个合乎逻辑的选择,因为这些聚合物材料是化学1生产的。有两种方法可以化学地回收聚合物材料,热解和分子回收2。通过热解,聚合物材料通过极端条件3、4转化为高价值产品。分子回收是利用去聚合回收起始材料的有效方法。去聚合后,单体单元可再聚合成处女聚合材料5。需要有合适的单体来大规模地应用分子回收。目前的塑料问题决定了社会需要坚固耐用的聚合物材料。同时,也更希望同样的聚合物材料易于回收利用,在环境中不耐用。电流聚合物材料具有良好的热和机械性能,不容易去聚合

利格宁,常见于血管植物,占世界天然碳含量的30%,是仅次于纤维素的第二大生物聚合物。褐金具有复杂的无定形结构,似乎是替代从化石材料中提取的芳香剂的合适替代品。木质素的三维结构为木材提供强度和刚度,以及抗降解。从化学上讲,木质素是一种非常复杂的多酚热集。它由三种不同的甲氧化苯丙烷结构的不同组成组成。西林吉尔、瓜亚基和p-羟基苯基(通常分别缩写为S、G和H)来自单利尼诺西纳皮尔醇、针叶醇和p-库马里尔酒精7。这些单位的分布不同,每个生物质类型,软木,例如,主要包括瓜亚基单位和硬木的瓜亚基和注射器单位8,9。可再生的天然资源,如树木和植物,是生产重新设计的单体创新聚合物材料10的理想。这些单体,从天然来源分离和合成,聚合到所谓的生物基聚合物11。

芳香性碳酸是几个数量级比同等的药化碳酸少12。各种商业聚酯使用芳香的碳酸,而不是药酸。因此,聚酯纺织品中由聚(乙烯四甲酸酯)纤维制成的纤维在洗涤过程中几乎对水解麻木不仁,例如,雨13。当需要聚酯分子回收时,建议在聚合物的积累中使用脂肪酯。

对于上述原因,我们已研究了用4-羟基-3,5-二氧二氢辛酸制造聚酯的可能性。克里切尔多夫15号、迈尔16号和米勒17、18号先前的研究表明,使用4-羟基-3,5-二氧-二氢辛酸制造聚合物是具有挑战性的。脱卡和交联阻碍了聚合,因此限制了这些合成器的成功。此外,多聚变的机制仍然不清楚。论文描述了聚酯聚(二氢酸)可以定期合成和高产的条件,从而为使用分子可回收的半芳香聚酯铺平了道路。

我们开发了一种绿色和高效的方法,利用注射器醛和恶性酸19,20之间的凝结反应合成西纳皮尼酸。在此绿色克诺维纳格尔之后,氢化产生二氢酸,适用于可逆多聚化。本出版物可视化分子可回收聚合物聚(二氢酸)的合成步骤,指木质素的基础单位,称为聚S。在分析聚合物材料后,聚氨酯在相对有利的条件下去聚聚到单体二氢酸中,并反复再聚。

Protocol

1. 绿色克诺维纳格尔凝结注射器醛对西纳皮尼奇酸与 5 摩尔% 碳酸氢铵 将马洛尼克酸(20.81 克,200.0 mmol)与注射器醛 (36.4 克, 200.0 mmol) 一起加入 250 mL 圆底烧瓶中。溶解两个成分在20.0 mL乙酸乙酸乙酸酯,并添加碳酸氢铵(790毫克,10.0毫米醇)到烧瓶。注:为确保完全完成凝结反应,旋转蒸发器可用于蒸馏乙酸乙酸乙酯并浓缩反应混合物,从而产生无溶剂反应。 将反应混合?…

Representative Results

西纳皮尼酸是使用绿色克诺维纳凝结剂从注射器醛中高纯度和高产量(>95%)合成的。(支持信息:图S1)电子因子表示废物产生,其中较高的数字表示更多的废物。电子因子的计算方法是获取总材料投入,减去所需最终产品的量,并将整个产品除以最终产品的量。这种绿色克诺维纳格尔凝结物的电子因子为1.0, 可以计算: [(29.81 克马洛尼克酸 = 36.4 克注射器醛 = 0.790 克碳酸氢铵 = 18….

Discussion

当二氢酸在反应容器中加热时,启动材料的升华发生,当应用真空时,这种效果得到增强。乙酰化已对二氢酸进行,以避免升华。克里切多夫等人12、27日承认,不仅乙酰化,而且类似的二寡聚化也发生了。然而,这些酯化单体和寡聚物不再升华,适合作为单体熔化聚合物28。此外,从4-乙氧二氢酸的预聚合物的形成证实了假设反应机…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢荷兰科学研究组织(NWO)的财政支持(授予杰克·范·希恩德尔023.007.020)。

Materials

Reaction 1: Green Knoevenagel condensation
Ammonium bicarbonate Sigma Aldrich >99%
Ethanol Boom Technical grade
Ethyl acetate Macron 99.8%
Hydrochloric acid Boom 37%
Malonic acid Sigma Aldrich 99% used as received
Sodium bicarbonate Sigma Aldrich >99.7%
Syringaldehyde Sigma Aldrich 98% used as received
Reaction 2: Hydrogenation
Magnesium sulfate Macron 99% dried
Raney™ nickel Sigma Aldrich >89%
Sodium hydroxide Boom Technical grade dissolved
Reaction 3: Acetylation
Acetic anhydride Macron >98%
Acetone Macron >99.5%
Sodium acetate Sigma Aldrich >99%
Reaction 4A: Polymerisation
1,2-xylene Macron >98%
Sodium hydroxide Boom Technical grade finely powdered
Zinc(II)acetate Sigma Aldrich 99.99%
Reaction 4B: Depolymerisation
Sodium hydroxide Boom Technical grade dissolved
Sulfuric acid Macron 100%
Analysis
CDCl3 Cambride Isotope Laboratories, Inc. 99.5%
CF3COOD Cambride Isotope Laboratories, Inc. 98%
Dimethylformamide Macron >99.9%
Hexafluoro-2-propanol TCI Chemicals >99%
Methanol Macron >99.8%
Tetrahydrofuran Macron >99.9%

Riferimenti

  1. Rahimi, A., García, J. M. Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry. 1 (6), 41570 (2017).
  2. Sardon, H., Dove, A. Plastics recycling with a difference. Science. 360 (6387), 380-381 (2018).
  3. Jones, G. O., Yuen, A., Wojtecki, R. J., Hedrick, J. L., García, J. M. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s. Proceedings of the National Academy of Sciences of the United States of America. 113 (28), 7722-7726 (2016).
  4. García, J. M., et al. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. Science. 344 (6185), 1251484 (2014).
  5. Brutman, J. P., De Hoe, G. X., Schneiderman, D. K., Le, T. N., Hillmyer, M. A. Renewable, Degradable, Chemically Recyclable Cross-Linked Elastomers. Industrial & Engineering Chemistry Research. 55 (42), 11097-11106 (2016).
  6. Hong, M., Chen, E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nature Chemistry. 8 (1), 42-49 (2016).
  7. Lochab, B., Shukla, S., Varma, I. K. Naturally occurring phenolic sources: monomers and polymers. RSC Advances. 4 (42), 21712 (2014).
  8. Fache, M., Boutevin, B., Caillol, S. Vanillin, a key-intermediate of biobased polymers. European Polymer Journal. 68, 488-502 (2015).
  9. Pinto, P. C. R., Costa, C. E., Rodrigues, A. E. Oxidation of Lignin from Eucalyptus globulus Pulping Liquors to Produce Syringaldehyde and Vanillin. Industrial & Engineering Chemistry Research. 52 (12), 4421-4428 (2013).
  10. Llevot, A., Grau, E., Carlotti, S., Grelier, S., Cramail, H. From Lignin-derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications. 37 (1), (2016).
  11. Hernández, N., Williams, R. C., Cochran, E. W. The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Organic & Biomolecular Chemistry. 12 (18), 2834-2849 (2014).
  12. Kricheldorf, H. R., Stukenbrock, T. New polymer syntheses 85. Telechelic, star-shaped and hyperbranched polyesters of β-(4-hydroxyphenyl) propionic acid. Polymer. 38 (13), 3373-3383 (1997).
  13. Gilding, D. K., Reed, A. M. Biodegradable polymers for use in surgery-poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer. 20 (12), 1454-1458 (1979).
  14. Jiang, Y., Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers. 8 (7), 243 (2016).
  15. Kricheldorf, H. R., Stukenbrock, T. New polymer syntheses, 92. Biodegradable, thermotropic copolyesters derived from β-(4-hydroxyphenyl)propionic acid. Macromolecular Chemistry and Physics. 198 (11), 3753-3767 (1997).
  16. Kreye, O., Oelmann, S., Meier, M. A. Renewable Aromatic-Aliphatic Copolyesters Derived from Rapeseed. Macromolecular Chemistry and Physics. 214 (13), 1452-1464 (2013).
  17. Mialon, L., Pemba, A. G., Miller, S. A. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chemistry. 12 (10), 1704 (2010).
  18. Nguyen, H. T. H., Reis, M. H., Qi, P., Miller, S. A. Polyethylene ferulate (PEF) and congeners: polystyrene mimics derived from biorenewable aromatics. Green Chemistry. 17 (9), 4512-4517 (2015).
  19. van Schijndel, J., Canalle, L. A., Molendijk, D., Meuldijk, J. The Green Knoevenagel Condensation: Solvent-free Condensation of Benzaldehydes. Green Chemistry Letters and Reviews. 10 (4), 404-411 (2017).
  20. van Schijndel, J., Molendijk, D., Spakman, H., Knaven, E., Canalle, L. A., Meuldijk, J. Mechanistic considerations and characterization of ammonia-based catalytic active intermediates of the Green Knoevenagel reaction of various benzaldehydes. Green Chemistry Letters and Reviews. 12 (3), 323-331 (2019).
  21. Sheldon, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews. 41 (4), 1437-1451 (2012).
  22. van Schijndel, J., Molendijk, D., Canalle, L. A., Rump, E. T., Meuldijk, J. Temperature Dependent Green Synthesis of 3-Carboxycoumarins and 3,4-unsubstituted Coumarins. Current Organic Synthesis. 16 (1), 130-135 (2019).
  23. Bloom, M. E., Vicentin, J., Honeycutt, D. S., Marsico, J. M., Geraci, T. S., Miri, M. J. Highly renewable, thermoplastic tetrapolyesters based on hydroquinone, p-hydroxybenzoic acid or its derivatives, phloretic acid, and dodecanedioic acid. Journal of Polymer Science Part A: Polymer Chemistry. 56 (14), 1498-1507 (2018).
  24. Padias, A. B., Hall, H. K. Mechanism Studies of LCP Synthesis. Polymers. 3 (2), 833-845 (2011).
  25. Moon, S., Lee, C., Taniguchi, I., Miyamoto, M., Kimura, Y. Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weight. Polymer. 42 (11), 5059-5062 (2001).
  26. Wellen, R. M. R. Effect of polystyrene on poly(ethylene terephthalate) crystallization. Materials Research. 17 (6), 1620-1627 (2014).
  27. Kricheldorf, H. R., Conradi, A. New polymer syntheses 16. LC-copolyesters of 3-(4-hydroxyphenyl) propionic acid and 4-hydroxy benzoic acids. Journal of Polymer Science Part A: Polymer Chemistry. 25 (2), 489-504 (1987).
  28. Chen, Y., Tan, L., Chen, L., Yang, Y., Wang, X. Study on biodegradable aromatic/aliphatic copolyesters. Brazilian Journal of Chemical Engineering. 25 (2), 321-335 (2008).
  29. Han, X., et al. A Change in Mechanism from Acidolysis to Phenolysis in the Bulk Copolymerization of 4-Acetoxybenzoic Acid and 6-Acetoxy-2-naphthoic Acid. Macromolecules. 29 (26), 8313-8320 (1996).
  30. Lu, X. F., Hay, J. N. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 42 (23), 9423-9431 (2001).
  31. Sánchez, M. E., Morán, A., Escapa, A., Calvo, L. F., Martínez, O. Simultaneous thermogravimetric and mass spectrometric analysis of the pyrolysis of municipal solid wastes and polyethylene terephthalate. Journal of Thermal Analysis and Calorimetry. 90 (1), 209-215 (2007).
check_url/it/61975?article_type=t

Play Video

Citazione di questo articolo
Molendijk, D., van Beurden, K., van Schijndel, J. Designed for Molecular Recycling: A Lignin-Derived Semi-aromatic Biobased Polymer. J. Vis. Exp. (165), e61975, doi:10.3791/61975 (2020).

View Video