Summary

使用模块化金门克隆的多基因结构快速组装

Published: February 05, 2021
doi:

Summary

该协议的目标是提供一个详细的,分步指南,以组装多基因结构使用模块化克隆系统的基础上,金门克隆。它还根据我们的经验就确保最佳装配的关键步骤提出了建议。

Abstract

金门克隆法使多个基因在任何用户定义的排列中能够快速组装。它使用 IIS 型限制酶,这些酶在识别站点之外切开,并创建短悬架。此模块化克隆 (MoClo) 系统使用分层工作流,其中不同 DNA 部分(如发起器、编码序列 (CDS) 和终结者)首先被克隆到条目载体中。然后,多个入口载体组装成转录单元。几个转录单元然后连接到多基因质粒。金门克隆战略具有巨大的优势,因为它允许无疤痕、定向和模块化组装在一锅反应中。分层工作流通常能够对多种多基因构造进行传真克隆,无需在进入载体之外进行测序。荧光蛋白的使用使视觉筛查变得简单。这项工作提供了一个详细的,分步协议,使用酵母模块化克隆(MoClo)套件组装多基因质粒。我们展示了多基因质粒组装的最佳和次优结果,并为菌落的筛选提供了指南。这种克隆策略非常适用于酵母代谢工程和其他需要多基因质粒克隆的情况。

Introduction

合成生物学旨在设计具有对制药、农业和化学工业有用的新功能的生物系统。以高通量方式组装大量DNA片段是合成生物学的基础技术。这样一个复杂的过程可以分解成多个层次,降低复杂性,一个概念借用的基础工程科学1,2。在合成生物学中,DNA片段通常根据功能分层组装:(一) 部分级别:”部分”是指具有特定功能的 DNA 片段,如发起人、编码序列、终结者、复制来源:(二) 转录单位(TU)水平:TU由发起人、编码序列和能够转录单个基因的终结者组成:(三) 多基因水平:多基因质粒包含多个 TUs,通常由整个代谢通路组成。这种由BioBrick社区开创的分层组装是合成生物学3中大型DNAs组装的基础概念。

在过去的十年里金门克隆技术极大地促进了分层DNA组装2。许多其他多部分克隆方法,如吉布森克隆8,结扎独立克隆(SLIC)9,尿素切除为基础的克隆(用户)10,韧带循环反应(LCR)11,并在体内重组(DNA组装)12,13,也已开发至今。但金门克隆是一种理想的DNA组装方法,因为它独立于基因特异性序列,允许无疤痕、定向和模块化组装在单锅反应中。金门克隆利用IIS型限制酶,识别非单体序列,在识别站点2外产生交错悬垂。然后,一个韧带加入退化的DNA片段,以获得一个多部分的组装。将这种克隆策略应用于模块化克隆(MoClo)系统,使多达10个DNA片段得以组装,90%以上的转化器被筛选出含有正确组装的构造4。

MoClo 系统提供了巨大的优势,加速了合成生物学的设计构建测试周期。首先,可互换部件使组合克隆能够快速测试大量的参数空间。例如,优化代谢通路通常需要循环通过每个基因的许多促进器来平衡通路通量。MoClo 系统可以轻松地处理如此苛刻的克隆任务。其次,需要对部分质粒进行排序,但通常不是TU或多基因质粒。在大多数情况下,通过菌落 PCR 或限制消化进行筛查足以在 TU 和多基因质粒水平上进行验证。这是因为克隆部分质粒是唯一需要PCR的步骤,它经常引入突变。第三,MoClo系统是构建多基因复杂代谢通路的理想之选。最后,由于普遍悬垂,部分质粒可以重复使用,并与整个生物工程社区共享。目前,MoClo套件可用于植物14,15,5,16,17,真菌6,18,19,20,21,22,细菌7,23,24,25,26,27和动物28,29。一个多王国的MoClo平台也于最近30日推出。

对于糖精,李等人已经开发出一种多才多艺的MoClo工具包,这是酵母合成生物学界的极好资源。该套件采用方便的 96 井格式,定义了八种类型的可互换 DNA 部件,包括各种功能良好的促进剂、荧光蛋白、终结者、肽标签、选择标记、复制源和基因组编辑工具。此工具包允许将多达 5 个转录单元组装成多基因质粒。这些功能对于酵母代谢工程很有价值,在酵母代谢工程中,部分或整个途径被过度表达以产生有针对性的化学物质。利用这个工具包,研究人员优化了杰拉尼奥尔、利纳洛尔31、青霉素32、粘液酸33、蓝蓝34和酵母β35的生产。

在这里,我们提供详细的分步协议,以指导使用 MoClo 工具包生成表皮或基因组表达的多基因通路。通过广泛使用这个工具包,我们发现,DNA浓度的准确测量是确保金门反应中每个部分的等价分布的关键。我们还建议T4DNA韧带超过T7DNA韧带,因为前者更好地工作与更多的悬垂36。最后,BsmBI 和 BsaI 的任何内部识别站点必须在组装前删除或驯化。或者,可以考虑合成部件以删除多个内部站点,并实现同步的 codon 优化。我们演示了如何使用这个工具包,表达一个五基因通路,用于β胡萝卜素和番茄红素生产在 塞雷维西亚。 我们进一步展示如何使用本套件中的基因组编辑工具敲除 ADE2 轨迹。这些基于颜色的实验被选为易于可视化的实验。我们还演示了如何产生融合蛋白,并利用金门克隆产生氨基酸突变。

Protocol

注:本工具包中提供的分层克隆协议可分为三个主要步骤:1. 克隆部分质粒:2. 克隆转录单位(TUs):3. 克隆多基因质粒(图1)。此协议从入门设计开始,以克隆多基因质粒的应用结束。 1. 克隆部分质粒(pYTK001) 的引金设计: 设计包含侧翼核苷酸 TTT 的前进和反向底漆,这是一个具有额外核苷酸 (CGTCTCN) 的 BsmBI 识别站点,一个 4 核苷酸 (nt…

Representative Results

这里的结果是四个复制的多基因质粒为β胡萝卜素(黄色)和番茄红素(红色)生产。建造了一个用于破坏 ADE2 轨迹的综合多基因质粒,其殖民地是红色的。 将 CDS 克隆到输入载体 (pYTK001)ERG20从酵母基因组和三个类胡萝卜素基因crtE,crtYB,crtI从质粒plM49448放大到条形载体…

Discussion

Lee等人开发的基于MoClo的克隆试剂盒为快速将一到五个转录单元组装成多基因质粒,用于复制或整合到酵母基因组中提供了极好的资源。该试剂盒的使用消除了酵母中表达多个基因时效的克隆瓶颈。

我们用T4DNA韧带测试了金门克隆的消化/配结周期的五种不同条件。我们发现,30个周期的消化在37°C 5分钟和结块在16°C 5分钟,然后最后消化步骤在50°C 10分钟和蛋白质灭活步骤在80?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由纽约州立大学研究基金会(奖 #: 71272)和布法罗大学影响奖(奖 #: 000077)资助。

Materials

0.5 mm Glass beads RPI research products 9831 For lysing yeast cells
Bacto Agar BD & Company 214010 Component of the yeast complete synthetic medium (CSM)
Bacto Peptone BD& Company 211677 Component of the yeast extract peptone dextrose medium (YPD)
BsaI-HFv2 New England Biolabs R3733S a highly efficient version of BsaI restriction enzyme
Carbenicillin Fisher Bioreagents 4800-94-6 Antibiotic for screening at the transcription unit level
Chloramphenicol Fisher Bioreagents 56-75-7 Antibiotic for screening at the entry vector level
CSM-His Sunrise Sciences 1006-010 Amino acid supplement of the yeast complete synthetic medium (CSM)
Dextrose Fisher Chemical D16-500 Carbon source of the yeast complete synthetic medium (CSM)
Difco Yeast Nitrogen Base w/o Amino Acids BD & Company 291940 Nitrogen source of the yeast complete synthetic medium (CSM)
dNTP mix Promega U1515 dNTPs for PCR
Esp3I New England Biolabs R0734S a highly efficient isoschizomer of BsmBI
Frozen-EZ Yeast Trasformation II Kit Zymo Research T2001 For yeast transformation
Hexanes Fisher Chemical H302-1 For carotenoid extraction from yeast cells
Kanamycin Fisher Bioreagents 25389-94-0 Antibiotic for screening at the multigene plasmid level
LB Agar, Miller Fisher Bioreagents BP1425-2 Lysogenic agar medium for E. coli culturing
LB Broth, Miller Fisher Bioreagents BP1426-2 Lysogenic liquid medium for E. coli culturing
Lycopene Cayman chemicals NC1142173 For lycopene quantification
MoClo YTK Addgene 1000000061 Depositing Lab: John Deuber
Monarch Plasmid Miniprep Kit New England Biolabs T1010L For plasmid purification from E.coli
Nanodrop Spectrophotometer Thermo Scientific ND2000c For measuring accurate DNA concentrations
NotI-HF New England Biolabs R3189S Restriction enzyme for integrative multigene plasmid linearization
Nourseothricin Sulphate Goldbio N-500-100 Antibiotic Selection marker for the pCAS plasmid used in this study
Phusion HF reaction Buffer (5X) New England Biolabs B0518S Buffer for PCR using Phusion polymerase
Phusion High Fidelity DNA Polymerase New England Biolabs M0530S High fidelity polymerase for all the PCR reactions
pLM494 Addgene 100539 Plasmid used to amplify crtI, crtYB and crtE used in this study
Quartz Cuvette Thermo Electron 10050801 For quantifing carotenoids
T4 ligase New England Biolabs M0202S Ligase for Golden Gate cloning
Thermocycler BIO-RAD 1851148 For performing all the PCR and cloning reactions
Tissue Homogenizer Bullet Blender Model: BBX24 For homogenization of yeast cells
UV-Vis Spectrophotometer Thermo Scientific Genesys 150 For quantifing carotenoids
Yeast Extract Fisher Bioreagents BP1422-500 Component of the yeast extract peptone dextrose medium (YPD)
β-carotene Alfa Aesar AAH6010603 For β-carotene quantification

Riferimenti

  1. Endy, D. Foundations for engineering biology. Nature. 438 (7067), 449-453 (2005).
  2. Engler, C., Gruetzner, R., Kandzia, R., Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 4 (5), 5553 (2009).
  3. Shetty, R. P., Endy, D., Knight, T. F. Engineering BioBrick vectors from BioBrick parts. Journal of Biological Engineering. 2, 5 (2008).
  4. Peccoud, J., et al. A Modular cloning system for standardized assembly of multigene constructs. PLoS ONE. 6 (2), (2011).
  5. Sarrion-Perdigones, A., et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 6 (7), 21622 (2011).
  6. Lee, M. E., DeLoache, W. C., Cervantes, B., Dueber, J. E. A Highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology. 4 (9), 975-986 (2015).
  7. Andreou, A. I., Nakayama, N. Mobius assembly: A versatile Golden-Gate framework towards universal DNA assembly. PLoS One. 13 (1), 0189892 (2018).
  8. Gibson, D. G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 6 (5), 343-345 (2009).
  9. Li, M. Z., Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods. 4 (3), 251-256 (2007).
  10. Geu-Flores, F., Nour-Eldin, H. H., Nielsen, M. T., Halkier, B. A. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Research. 35 (7), 55 (2007).
  11. de Kok, S., et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synthetic Biology. 3 (2), 97-106 (2014).
  12. Shao, Z., Zhao, H., Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Research. 37 (2), 16 (2009).
  13. Gibson, D. G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Research. 37 (20), 6984-6990 (2009).
  14. Engler, C., et al. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology. 3 (11), 839-843 (2014).
  15. Gantner, J., et al. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system. PLoS One. 13 (5), 0197185 (2018).
  16. Ordon, J., et al. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant Journal. 89 (1), 155-168 (2017).
  17. Sarrion-Perdigones, A., et al. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology. 162 (3), 1618-1631 (2013).
  18. Agmon, N., et al. Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. ACS Synthetic Biology. 4 (7), 853-859 (2015).
  19. Hernanz-Koers, M., et al. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genetics and Biology. 116, 51-61 (2018).
  20. Prielhofer, R., et al. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Systems Biology. 11 (1), 123 (2017).
  21. Celinska, E., et al. Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microbial Biotechnology. 10 (2), 450-455 (2017).
  22. Pullmann, P. K., et al. A modular two yeast species secretion system for the production and preparative application of fungal peroxygenases. bioRxiv. , (2020).
  23. Wu, D., Schandry, N., Lahaye, T. A modular toolbox for Golden-Gate-based plasmid assembly streamlines the generation of Ralstonia solanacearum species complex knockout strains and multi-cassette complementation constructs. Molecular Plant Pathology. 19 (6), 1511-1522 (2018).
  24. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  25. Iverson, S. V., Haddock, T. L., Beal, J., Densmore, D. M. CIDAR MoClo: Improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology. ACS Synthetic Biology. 5 (1), 99-103 (2016).
  26. Vasudevan, R., et al. CyanoGate: A modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiology. 180 (1), 39-55 (2019).
  27. Leonard, S. P., et al. Genetic Engineering of bee gut microbiome acteria with a Ttoolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology. 7 (5), 1279-1290 (2018).
  28. Schwartz, M. L., Jorgensen, E. M. SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans. Genetica. 202 (4), 1277-1288 (2016).
  29. Martella, A., Matjusaitis, M., Auxillos, J., Pollard, S. M., Cai, Y. EMMA: An extensible mammalian modular assembly toolkit for the rapid design and production of diverse expression vectors. ACS Synthetic Biology. 6 (7), 1380-1392 (2017).
  30. Chiasson, D., et al. A unified multi-kingdom Golden Gate cloning platform. Scientific Reports. 9 (1), 10131 (2019).
  31. Denby, C. M., et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nature Communications. 9 (1), 965 (2018).
  32. Awan, A. R., et al. Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nature Communications. 8, 15202 (2017).
  33. Leavitt, J. M., et al. Biosensor-Enabled Directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnology Journal. 12 (10), (2017).
  34. Hsu, T. M., et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology. 14 (3), 256-261 (2018).
  35. Grewal, P. S., Modavi, C., Russ, Z. N., Harris, N. C., Dueber, J. E. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic Engineering. 45, 180-188 (2018).
  36. Potapov, V., et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synthetic Biology. 7 (11), 2665-2674 (2018).
  37. Vazquez-Vilar, M., et al. Software-assisted stacking of gene modules using GoldenBraid 2.0 DNA-assembly framework. Methods in Molecular Biology. 1284, 399-420 (2015).
  38. Pullmann, P., et al. Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design. Scientific Reports. 9 (1), 10932 (2019).
  39. Engler, C., Sylvestre, M., Valla, S., Lale, R. . DNA Cloning and Assembly Methods. 1116, 119-131 (2014).
  40. Liu, H., Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology. 8, 91 (2008).
  41. Chen, X., Zaro, J. L., Shen, W. C. Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews. 65 (10), 1357-1369 (2013).
  42. Mullis, K., et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology. 51, 263-273 (1986).
  43. Naito, Y., Hino, K., Bono, H., Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 31 (7), 1120-1123 (2015).
  44. Labun, K., et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research. 47 (1), 171-174 (2019).
  45. Ryan, O. W., et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife. 3, (2014).
  46. Gietz, R. D., Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols. 2 (1), 31-34 (2007).
  47. Heintz, N., Gong, S. Small-scale preparations of yeast DNA. Cold Spring Harbor Protocols. 2020 (10), (2020).
  48. Hochrein, L., Mitchell, L. A., Schulz, K., Messerschmidt, K., Mueller-Roeber, B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nature Communications. 9 (1), 1931 (2018).
  49. Verwaal, R., et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology. 73 (13), 4342-4350 (2007).
  50. Jones, E., Strathern, J. N., Jones, E. W., Broach, J. R., et al. . The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. 11, 181 (1982).
  51. Sehgal, N., et al. CRISPR gene editing in yeast: an experimental protocol for an upper-division undergraduate laboratory course. Biochemistry and Molecular Biology Education. 46 (6), 592-601 (2018).
  52. Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Verkhusha, V. V., Turoverov, K. K. Sensitivity of superfolder GFP to ionic agents. PLoS One. 9 (10), 110750 (2014).
check_url/it/61993?article_type=t

Play Video

Citazione di questo articolo
Mukherjee, M., Caroll, E., Wang, Z. Q. Rapid Assembly of Multi-Gene Constructs using Modular Golden Gate Cloning. J. Vis. Exp. (168), e61993, doi:10.3791/61993 (2021).

View Video