Summary

Two Infection Assays to Study Non-Lethal Virulence Phenotypes in C. Albicans using C. Elegans

Published: May 17, 2021
doi:

Summary

Fungal opportunist pathogens can cause life-threatening as well as minor infections, but non-lethal phenotypes are frequently ignored when studying virulence. Therefore, we developed a nematode model that monitors both the survival and reproduction aspects of host to investigate fungal virulence.

Abstract

While pathogens can be deadly to humans, many of them cause a range of infection types with non-lethal phenotypes. Candida albicans, an opportunistic fungal pathogen of humans, is the fourth most common cause of nosocomial infections which results in ~40% mortality. However, other C. albicans infections are less severe and rarely lethal and include vulvovaginal candidiasis, impacting ~75% of women, as well as oropharyngeal candidiasis, predominantly impacting infants, AIDS patients and cancer patients. While murine models are most frequently used to study C. albicans pathogenesis, these models predominantly assess host survival and are costly, time consuming, and limited in replication. Therefore, several mini-model systems, including Drosophila melanogaster, Danio rerio, Galleria mellonella, and Caenorhabditis elegans, have been developed to study C. albicans. These mini-models are well-suited for screening mutant libraries or diverse genetic backgrounds of C. albicans. Here we describe two approaches to study C. albicans infection using C. elegans. The first is a fecundity assay which measures host reproduction and monitors survival of individual hosts. The second is a lineage expansion assay which measures how C. albicans infection affects host population growth over multiple generations. Together, these assays provide a simple, cost-effective way to quickly assess C. albicans virulence.

Introduction

Candida albicans is an opportunistic fungal pathogen of humans residing in different niches, including the oral cavity, gastrointestinal, and urogenital tracts1. While typically commensal, C. albicans causes both mucosal and bloodstream infections, the latter of which can be deadly. The severity of C. albicans infection is dependent on host immune function, with immunocompromised individuals more susceptible to infection than healthy individuals1. In addition to host-related factors, C. albicans has several virulence traits which include, hyphae, biofilm formation, and production of secretory aspartyl proteinases (SAPs), which function to promote adhesion and invasion of C. albicans into host epithelial cells2, and candidalysin, a cytolytic peptide toxin3,4. Together, this suggests that C. albicans virulence is a complex phenotype resulting from an interaction between the pathogen and its host environment. Therefore, investigating virulence is best studied using model organisms that serve as host environments, in contrast to in vitro approaches.

Several host models, including both vertebrate and invertebrate organisms, have been developed to study C. albicans infection. The murine model, considered the gold standard, is often used for its adaptive and innate immune system, and ability to monitor disease progression both systemically and in specific organs5. However, there are significant limitations to this host model, including maintenance costs, small number of offspring, and decreased power and reproducibility associated with small sample sizes5. Therefore, other, more simple model organisms such as zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), wax moth (Galleria mellonella), and nematode (Caenorhabditis elegans) have been developed. These non-mammalian model organisms are smaller, require less laboratory maintenance and larger sample sizes allow for greater power and reproducibility compared to murine models. Each of these models have specific advantages and disadvantages that need to be considered when choosing an infection model. G. mellonella offers the most physiologically similar environment to humans as it can be grown at 37 °C and has various phagocytic cells7. Furthermore, this model allows for the direct injection of a specific inoculum7. However, there is no fully sequenced genome, and no established method of creating mutant strains. Similar to G. mellonella, the D. rerio model allows for direct injection of a specific inoculum5,7. It also has both adaptive and innate immune system5, which is unique to this non-mammalian model, yet requires aquatic breeding tanks to maintain. D. melanogaster and C. elegans have similar advantages and disadvantages, which include fully sequenced genomes that are easy to manipulate and generate mutant strains7 but do not have adaptive immunity or cytokines7. Of all these non-mammalian models, C. elegans has the most rapid life cycle, self-fertilize to generate large numbers of genetically identical offspring, and are the most amenable to large-scale screens6,7,8. C. elegans has been extremely powerful for high-throughput screening of antifungal drugs9,10, characterizing virulence factors7, and identifying C. albicans-specific host defense networks11. The innate immune system in C. elegans has multiple components that are highly conserved with humans12. Host innate defenses include production of antimicrobial peptides13 (AMPs) and reactive oxygen species14,15,16.

The severity of C. albicans infection is predominantly measured by host survival but cannot capture non-lethal virulence phenotypes. An often-overlooked aspect of host fitness is reproduction, but several studies suggest that C. albicans impacts reproduction by reducing sperm viability17,18, suggesting that this may be an important aspect of host fitness to study. Therefore, the impact of C. albicans infection on host fecundity is a useful way to study non-lethal virulence phenotypes. We have developed two infection assays using C. elegans to investigate both survival and reproduction phenotypes in healthy hosts19,20. Here we describe both the fecundity and lineage expansion assays. Fecundity measures both progeny produced and survival of single hosts, and lineage expansion assesses the consequences of infection over three host generations. We demonstrate how these assays can be utilized to screen C. albicans deletion mutants to capture both dramatic and subtle differences in lethal and non-lethal virulence phenotypes.

Protocol

1. Preparatory steps for the experiments Preparing C. albicans and Escherichia coli cultures NOTE: The strains used in this study are listed in Table 1. Maintain C. albicans and E. coli strains as glycerol stocks at −80 °C. Using a sterile toothpick, streak desired C. albicans strain onto solid yeast peptone dextrose (YPD) (1% yeast extract, 2% bactopeptone, 2% glucose, 1.5% agar, 0.004% adenine, 0.008% urid…

Representative Results

Here we present two assays that measure C. albicans virulence as a non-lethal phenotype using C. elegans as an infection model. The first assay, fecundity, monitors how C. albicans infection impacts single hosts for progeny production and survival. The second assay, lineage expansion, measures how C. albicans infection impacts population growth over multiple generations. The fecundity assay has multiple measures of h…

Discussion

Here, we present two simple assays that measure fungal virulence. Both assays leverage C. elegans as a host system that includes monitoring for both lethal and non-lethal host phenotypes. For example, fecundity assays investigate the reproductive success of individual infected hosts while also measuring individual survival. The daily monitoring provides not only total brood size, but also reproductive timing, and time of death. The lineage expansion assay was developed as a simplified version of the fecundity as…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Dorian Feistel, Rema Elmostafa, and McKenna Penley for their assistance in developing our assays and data collection. This research is supported by NSF DEB-1943415 (MAH).

Materials

1.5 mL eppendorf microtubes 3810X Millipore Sigma Z606340
100 mm x 15 mm petri plates Sigma-Aldrich P5856-500EA
15 mL Falcon Conicals Fisher Scientific 14-959-70C
50 mL Falcon Conicals Fisher Scientific 14-432-22
Adenine Millipore Sigma A8626
Agar (granulated, bacterilogical grade) Apex BioResearch Produces 20-248
Aluminum Wire (95% Pt, 32 Gauge) Genesee Scientific 59-1M32P
Ammonium Chloride Millipore Sigma 254134
Bacterial Cell Spreader SP Scienceware 21TP50
BactoPeptone Fisher BioReagants BP1420-500
Disposable Culture Tubes (20 x 150 mm) FIsherBrand 14-961-33
Dissection Microscope (NI-150 High Intensity Illuminator) Nikon Instrument Inc.
E. coli Caenorhabditis Genetics Center OP50
Glucose Millipore Sigma 50-99-7
Medium Petri Dishes (35 X 10 mm) Falcon 353001
Metal Spatula SP Scienceware 8TL24
Nematode Growth Media (NGM) Dot Scientific DSN81800-500
Potassium Phosphate monobasic Sigma P0662-500G
Sodium Chloride Fisher Scientific BP358-1
Sodium Phosphate Fisher Scientific BP332-500
Streptomycin Sulfate Thermo-Fisher Scientific 11860038
Tryptone Millipore Sigma 91079-40-2
Uridine Millipore Sigma U3750
Wildtype C. elegans Caenorhabditis Genetics Center N2
Yeast Extract Millipore Sigma 8013-01-2

Riferimenti

  1. Underhill, D. M., Iliev, I. D. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology. 14 (6), (2014).
  2. Ibrahim, A. S., Filler, S. G., Sanglard, D., Edwards, J. E., Hube, B. Secreted Aspartyl Proteinases and Interactions of Candida albicans with Human Endothelial Cells. Infection and Immunity. 66 (6), 3003-3005 (1998).
  3. Calderone, R. A., Fonzi, W. A. Virulence factors of Candida albicans. Trends in Microbiology. 9 (7), 327-335 (2001).
  4. Mayer, F. L., Wilson, D., Hube, B. Candida albicans pathogenicity mechanisms. Virulence. 4 (2), 119-128 (2013).
  5. Chin, V., Lee, T., Rusliza, B., Chong, P. Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host-Pathogen Interaction: A Review. International Journal of Molecular Sciences. 17 (10), 1643 (2016).
  6. Elkabti, A., Issi, L., Rao, R. Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. Journal of Fungi. 4 (4), 123 (2018).
  7. Arvanitis, M., Glavis-Bloom, J., Mylonakis, E. Invertebrate models of fungal infection. Biochimica et biophysica acta. 1832 (9), 1378-1383 (2013).
  8. Issi, L., Rioux, M., Rao, R. The Nematode Caenorhabditis Elegans – A Versatile Vivo</em> Model to Study Host-microbe Interactions. Journal of Visualized Experiments. (128), e56487 (2017).
  9. Breger, J., et al. Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay. PLoS Pathogens. 3 (2), 18 (2007).
  10. Okoli, I., et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PloS one. 4 (9), 7025 (2009).
  11. Pukkila-Worley, R., Ausubel, F. M., Mylonakis, E. Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses. PLoS Pathogens. 7 (6), 1002074 (2011).
  12. Kim, D. H., Ausubel, F. M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Current Opinion in Immunology. 17 (1), 4-10 (2005).
  13. Kim, D. H., et al. A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity. Science. 297 (5581), 623-626 (2002).
  14. van der Hoeven, R., McCallum, K. C., Cruz, M. R., Garsin, D. A. Ce-Duox1/BLI-3 Generated Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during Infection in C. elegans. PLoS Pathogens. 7 (12), 1002453 (2011).
  15. van der Hoeven, R., Cruz, M. R., Chávez, V., Garsin, D. A. Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans. PLOS ONE. 10 (4), 0124091 (2015).
  16. Chávez, V., Mohri-Shiomi, A., Garsin, D. A. Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans. Infection and Immunity. 77 (11), 4983-4989 (2009).
  17. Vander, H., Prabha, V. Evaluation of fertility outcome as a consequence of intravaginal inoculation with sperm-impairing micro-organisms in a mouse model. Journal of Medical Microbiology. 64, 344-347 (2015).
  18. Castrillón-Duque, E. X., Suárez, J. P., Maya, W. D. C. Yeast and Fertility: Effects of In Vitro Activity of Candida spp. on Sperm Quality. Journal of Reproduction & Infertility. 19 (1), 49-55 (2018).
  19. Feistel, D. J., et al. A Novel Virulence Phenotype Rapidly Assesses Candida Fungal Pathogenesis in Healthy and Immunocompromised Caenorhabditis elegans Hosts. mSphere. 4 (2), (2019).
  20. Feistel, D. J., Elmostafa, R., Hickman, M. A. Virulence phenotypes result from interactions between pathogen ploidy and genetic background. Ecology and Evolution. 10 (17), 9326-9338 (2020).
  21. Mitchell, B. M., Wu, T. G., Jackson, B. E., Wilhelmus, K. R. Candida albicans Strain-Dependent Virulence and Rim13p-Mediated Filamentation in Experimental Keratomycosis. Investigative Ophthalmology & Visual Science. 48 (2), 774-780 (2007).
  22. Altun, Z. F., Hall, D. H. WormAtas Hermaphrodite Handbook – Introduction. WormAtlas. , (2006).
  23. Yuan, X., Mitchell, B. M., Hua, X., Davis, D. A., Wilhelmus, K. R. The RIM101 Signal Transduction Pathway Regulates Candida albicans Virulence during Experimental Keratomycosis. Investigative Ophthalmology & Visual Science. 51 (9), 4668-4676 (2010).
  24. Davis, D., Edwards, J. E., Mitchell, A. P., Ibrahim, A. S. Candida albicans RIM101 pH Response Pathway Is Required for Host-Pathogen Interactions. Infection and Immunity. 68 (10), 5953-5959 (2000).
  25. Chamilos, G., et al. Candida albicans Cas5, a Regulator of Cell Wall Integrity, Is Required for Virulence in Murine and Toll Mutant Fly Models. The Journal of Infectious Diseases. 200 (1), 152-157 (2009).
  26. Bruno, V. M., et al. Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5. PLoS Pathogens. 2 (3), 21 (2006).
  27. Davis, D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Current Genetics. 44 (1), 58 (2003).
  28. Jain, C., Yun, M., Politz, S. M., Rao, R. P. A Pathogenesis Assay Using Saccharomyces cerevisiae and Caenorhabditis elegans Reveals Novel Roles for Yeast AP-1, Yap1, and Host Dual Oxidase BLI-3 in Fungal Pathogenesis. Eukaryotic Cell. 8 (8), 1218-1227 (2009).
  29. De, A., Sahu, A. K., Singh, V. Bite size of Caenorhabditis elegans regulates feeding, satiety and development on yeast diet. bioRxiv. , 473256 (2018).
  30. Pukkila-Worley, R., Ausubel, F. M. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current Opinion in Immunology. 24 (1), 3-9 (2012).
  31. Smith, A. C., Hickman, M. A. Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States. mSphere. 5 (3), 00433 (2020).
  32. Palominos, M. F., Calixto, A. Quantification of Bacteria Residing in Caenorhabditis elegans Intestine. BIO-PROTOCOL. 10 (9), (2020).
  33. Marsh, E. K., May, R. C. Caenorhabditis elegans, a Model Organism for Investigating Immunity. Applied and Environmental Microbiology. 78 (7), 2075-2081 (2012).
  34. Liberati, N. T., et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences of the United States of America. 101 (17), 6593-6598 (2004).
This article has been published
Video Coming Soon
Keep me updated:

.

Citazione di questo articolo
Smith, A. C., Dinh, J., Hickman, M. A. Two Infection Assays to Study Non-Lethal Virulence Phenotypes in C. Albicans using C. Elegans. J. Vis. Exp. (171), e62170, doi:10.3791/62170 (2021).

View Video