Waiting
Elaborazione accesso...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

אין ויטרו מודלים עורקיים בתרבית תאים 3D לחקר פילוח תרופות כלי דם תחת זרימה

Published: March 14, 2021 doi: 10.3791/62279

Summary

כאן, אנו מציגים פרוטוקול חדש כדי לחקור ולמפה את התצהיר הממוקד של נשאי סמים לתאי אנדותל במודלים מפוברקים, בגודל אמיתי, עורק אנושי תלת מימדי תחת זרימה פיזיולוגית. השיטה המוצגת עשויה לשמש פלטפורמה חדשה למיקוד נשאי סמים בתוך מערכת כלי הדם.

Abstract

השימוש במודלים תלת מימדיים (תלת-ממדיים) של עורקים אנושיים, המתוכננים עם הממדים והאנטומיה הנכונים, מאפשר מידול נכון של תהליכים חשובים שונים במערכת הלב וכלי הדם. לאחרונה, למרות מספר מחקרים ביולוגיים בוצעו באמצעות מודלים תלת ממדיים כאלה של עורקים אנושיים, הם לא הוחלו לחקור פילוח כלי דם. מאמר זה מציג שיטה חדשה לייצור מודלים עורקיים אנושיים בגודל אמיתי ומשוחזר באמצעות טכניקת הדפסה תלת-ממדית, ליישר אותם בתאי אנדותל אנושיים (ECs) וללמוד פילוח חלקיקים תחת זרימה פיזיולוגית. מודלים אלה יש את היתרון של שכפול הגודל הפיזיולוגי ואת התנאים של כלי הדם בגוף האדם באמצעות רכיבים בעלות נמוכה. טכניקה זו עשויה לשמש פלטפורמה חדשה ללימוד והבנת פילוח תרופות במערכת הלב וכלי הדם ועשויה לשפר את העיצוב של ננו-רפואה להזרקה חדשה. יתר על כן, הגישה המוצגת עשויה לספק כלים משמעותיים לחקר אספקה ממוקדת של סוכנים שונים למחלות לב וכלי דם תחת זרימה ספציפית למטופל ומצבים פיזיולוגיים.

Introduction

מספר גישות יושמו לאחרונה תוך שימוש בדגמים תלת-ממדיים של עורקים אנושיים1,2,3,4,5. מודלים אלה לשכפל את האנטומיה הפיזיולוגית ואת הסביבה של עורקים שונים בגוף האדם במבחנה. עם זאת, הם שימשו בעיקר במחקרי ביולוגיה של התא. מחקרים עדכניים על מיקוד כלי דם של חלקיקים לאנדותל כוללים סימולציות חישוביות סיליקו 6,7,8, במודלים מיקרופלואידיים במבחנה 9,10,11, ובדגמי בעלי חיים vivo 12. למרות התובנות שהם סיפקו, מודלים ניסיוניים אלה לא הצליחו לדמות במדויק את תהליך הפילוח המתרחש בעורקים האנושיים, שבו זרימת הדם והמודינמיקה מהווים גורמים דומיננטיים. לדוגמה, המחקר של מיקוד חלקיקים לאזורים טרשת עורקים בביפורציה בעורק הראשי, הידועים בדפוס זרימת ההדקלם המורכב שלהם ושיפוע מתח גזוז הקיר, עשוי להשפיע על המסע שנלקח על ידי החלקיקים לפני שהם מגיעים לאנדהל13,14,15,16. לכן, מחקרים אלה חייבים להתבצע בתנאים המשכפלים את הסביבה הפיזיולוגית, כלומר,גודל, ממד, אנטומיה ופרופיל זרימה.

לאחרונה, קבוצת מחקר זו מפוברק מודלים עורקיים אנושיים משוחזרים 3D כדי לחקור את התצהיר ואת מיקוד של חלקיקים vasculature17. המודלים התבססו על העתקים גיאומטריים תלת-ממדיים של כלי הדם האנושיים, אשר היו אז מתורבתים עם ECs אנושי כי לאחר מכן מרפד את הקירות הפנימיים שלהם. בנוסף, כאשר הם נתונים למערכת זלוף המייצרת זרימה פיזיולוגית, המודלים שיכפלו במדויק את התנאים הפיזיולוגיים. מערכת ההזנה תוכננה לחדיר נוזלים בקצב זרימה קבוע, תוך שימוש במשאבה פרייסטלית בתצורות סגורות ומעגלים פתוחים(איור 1). המערכת יכולה לשמש כמעגל סגור כדי למפות תצהיר חלקיקים ומיקוד לתאים שנזרעו בתוך מודל העורקנות. בנוסף, זה יכול לשמש מעגל פתוח לשטוף חלקיקים שאינם דבקים בסוף הניסויים כדי לנקות ולתחזק את המערכת. מאמר זה מציג פרוטוקולים לייצור דגמים תלת-ממדיים של ביפורציה דמוית-הלב האנושית, עיצוב מערכת ההזדוקות ומיפוי התצהיר של חלקיקים ממוקדים בתוך המודלים.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

הערה: פרוטוקול זה מתאר את הייצור של מודל תלת-ממדי של העורק הראשי וניתן להחיל אותו כדי ליצור כל עורק עניין אחר על ידי שינוי הפרמטרים הגיאומטריים.

1. עיצוב וייצור של ביפורציה תלת-ממדית של דגם העורק הראשי האנושי

  1. בחר תמונות מחולים או גיאומטריות שנחקרו בעבר של ביפורציה בעורק הראשי האנושי, וליצור מודל עיצובי בעזרת מחשב של התבנית שיש להדפיס.
    הערה: לעורק הראשי יש פתח אחד ושני שקעים. חשוב לעצב מסגרת עובש תלת-ממדית סביב העורק והדפסה זמנית תומכת בין המסגרת לתבנית העורק(איור 2A-C).
  2. הדפס את הגיאומטריות באמצעות מדפסת תלת-ממד. חותכים את תומכי ההדפסה הזמניים, ומשתמשים בניפוי זכוכית כדי ללטש ולהחליק את התבניות, במיוחד באזורים שבהם נותכו התומכים. יש לשטוף את הדגם המלוטשה באלכוהול איזופרופיל כדי להסיר את אבק הפלסטיק, ולאפשר להתייבש לחלוטין במכסה המנוע הכימי למשך 2-3 שעות.
    הערה: כאן, התבניות המודפסות היו עשויות שרף ברור v4 (איור 2D,E).
  3. כדי להמיס בקלות את הפלסטיק, לרסס את התבניות עם לכה שקופה בתוך מכסה המנוע הכימי, ולאפשר אוויר יבש במשך 1 שעות. חזור על 3x זה.
    הערה: כאן, 2X כיסוי אולטרה Clear ספריי שימש, אבל כל סוג אחר צריך להיות מתאים כל עוד זה לא לכה עץ. אשר כי לא נשאר פלסטיק חשוף כי הפלסטיק עשוי להגיב עם הסיליקון ולמנוע ממנו להתמצק כראוי. איכות המשטח המרוסס תקבע את איכות פני השטח של דגם הסיליקון הסופי.
  4. חותכים שקופיות/רצועות מלבניות שקופות של פלסטיק חלק באותם ממדים כמו מסגרת התבנית, ומדביקים אותם באמצעות הלכה למסגרת מכל הצדדים ומצד אחד של המסגרת, כך שהיא תהיה אטומה בתחתית ופתוחה בחלק העליון. החל את הלכה באמצעות מברשת צבע בתוך מכסה המנוע הכימי, ואפשר לשקופיות להתייבש לחלוטין למשך 24 שעות לפחות (איור 2F).
  5. להכנת תערובת גומי הסיליקון, מוסיפים סיליקון נוזלי עם חומר הריפוי שלו (יחס מסה 1:10) בצלחת פלסטיק, ומערבבים ביסודיות כדי להבטיח ערבוב מלא. עבור דגם הכבישים, להוסיף 54 גרם של סיליקון ו 6 גרם של סוכן הריפוי שלה.
  6. מצננים את התערובת במשך 15 דקות ב 4 °C (7 °F), ולאחר מכן degas אותו בחיטוי ואקום עד כל בועות האוויר בוטלו. מניחים את התבנית בחיטוי (כשהצד הפתוח פונה כלפי מעלה), יוצקים לאט את תערובת הסיליקון לתבנית, ושוב מסירים את בועות האוויר עד שהתערובת ברורה.
  7. תן לתבנית לעמוד עם הסיליקון לילה בטמפרטורת החדר (אם אפשר, להשאיר אותו בחיטוי ללא ואקום). אם התערובת לא התייבשה לחלוטין, לדגור אותו ב 60 °C (60 °F) עוד כמה שעות.
  8. לאחר שהתערובת יבשה לחלוטין, הסירו את השקופיות השקפות, וטבולים את הדגם באצטון מוחלט למשך 48 שעות במכסה המנוע הכימי עד שהפלסטיק נמס לחלוטין. מוציאים את שאריות הפלסטיק עם מקל עץ. כדי לאדות את האצטון לכוד בתוך המודל, לדגור אותו ב 60 °C לפחות 4 ימים לפני זריעת התא.

2. תרבות התאים וזריעה במודלים

  1. הכן שלושה מחברים לדגם הערקר: אחד לשקע ושניים לשקעים (ראה טבלת חומרים). לחטא את הדגם ואת המחברים על ידי הקרנה אולטרה סגולה במכסה המנוע הביולוגי במשך 20 דקות.
  2. מצופים את הדגמים עם 4 מ"ל של 100 מיקרוגרם / mL פיברונכטין (ב 1x תמיסת מלח חוצץ פוספט, (PBS)) עבור 2 שעות ב 37 °C (50 °F) או לילה ב 4 °C (50 °F). הזרק את פתרון פיברונקטין לתוך המודל דרך הכניסה באמצעות מזרק פלסטיק 5 או 10 מ"ל. הסר את fibronectin דרך השקע, לשטוף את המודל עם EC בינוני.
  3. להשעות 2.5 × 106 תאים / מ"ל תאי אנדותל וריד אנושי אנושי (HUVECs, מעבר < 6), ולמלא את הדגם עם 4 מ"ל של השעיית התא באמצעות מזרק פלסטיק 5 או 10 מ"ל (איור 3A). מניחים את הדגם על סיבוב בתוך אינקובטור (37 °C) במהירות של 1 סל"ד ל-48 שעות כדי להבטיח זריעה הומוגנית. ודאו שהמודל מחובר היטב לרוטטור(איור 3B). החליפו את המדיום לאחר 24 שעות בתוך מכסה המנוע הביולוגי, וחזרו לרוטציה בתוך האינקובטור לעוד 24 שעות.
    הערה: לאחר 24 שעות, התאים נזרעים וניתן לדמייןם באמצעות מיקרוסקופ.
  4. הסר את הדגם מן המסובב, ולשטוף עם PBS 1x באמצעות מזרק פלסטיק 10 מ"ל. כדי לתקן את התאים, לדגור על התאים עם 4 מ"ל של 4% paraformaldehyde (PFA) לדגם במשך 15 דקות בתוך מכסה המנוע הכימי, ולאחר מכן לשטוף 3x עם PBS. הוסיפו 4 מ"ל של PBS, ואחסנו ב-4 °C (איור3C). להכתים את התאים בתוך המודל באמצעות פרוטוקולי הכתמה סטנדרטיים (למשל, כתמים גרעיניים עם 4′,6-דיאמידינו-2-פנילינדול (DAPI), איור 3D).

3. עיצוב מערכת ההשתפות

  1. מערכת ההזנקות כוללת שני פתחים ושני צינורות שקע. מזגו את שני המפרצונים לצינור זיהוי יחיד של 4 מ"מ ושוב לשני צינורות זיהוי 6 מ"מ, המתחברים למשאבה ההפריסטית. מזגו את שני צינורות הזיהוי של 6 מ"מ שיוצאים מהמשאבה העילית לצינור יחיד של 4 מ"מ, וחברו אותו למדכא תנודות כדי למנוע תנודות מהמשאבה. השתמש בבקבוק 250 מ"ל בעל פה צר עם מכסה של שלושה פתחים כמדכא.
  2. חבר פתח אחד לפתח מהמשאבה, סגור את השני עם פקק המשמש לאוורור לחץ במצבי חירום, והרחיב את הפתח השלישי (שהוא השקע) לתחתית הבקבוק.
  3. חבר את המדכא לפרצון של דגם הערקר התרבותי באמצעות צינורות השקע. מזג את שני שקעי הדגם לאמבטיה אחת, שתהיה השקע של המערכת (כל הצינורות הם מזהה 4 מ"מ).
  4. לפצל את צינורות השקע לשני צינורות שקע (אחד עבור המעגל הסגור והשני עבור מיכל הפסולת במעגל הפתוח). חבר מהדק פלסטיק לכל צינור.
    הערה: השילוב של מלחציים פתוחים/סגורים יקבע אם המערכת נמצאת בתצורת מעגל סגור או פתוח. כפי שמוצג באיור 1, אם המהדקים a ו-d קרובים בעוד ש-b ו-c פתוחים, המערכת היא מעגל סגור; ההפך מביא את המערכת לתצורת מעגל פתוח.
  5. הכן שלושה מיכלים: אחד שיכול להכיל נוזל 300 מ"ל (למעגל סגור) ושניים אחרים של 1 L כל אחד: אחד לשטיפה והשני לפסולת (למעגל פתוח).

4. תצורה במעגל סגור: ניסוי זלוף והדמיה

  1. הוסף 300 מ"ל של PBS למיכל במעגל סגור, וזה מספיק כדי למלא את המערכת כולה, כולל הצינורות ואת המודל. מניחים צינור מפרצון אחד וצינור שקע אחד (מלחציים פתוחים b ו- c) בתוך המיכל.
  2. מלאו את מיכל הכביסה 1 L במים מזוקקים (לשטיפה בסוף הניסוי), והותיר את מיכל הפסולת 1 L האחרים ריקים. מניחים את הצינורות והשקע האחרים (סוגרים מהדקים א' ו-ד') במיכלי הכביסה והפסולת, בהתאמה.
  3. הוציא את דגם התרבתות של התא הקבוע מתוך אחסון של 4 °C (4 °F) ורוקן את ה- PBS. חבר את המפרצון והשקעים של הערקר כמתואר בשלבים 3.3-3.4. אין להשאיר את הדגם יבש במשך זמן רב. לאחר חיבור הדגם, הפעל את המשאבה כדי לעיין בנוזל.
  4. הנח את דגם הכבישים מתחת למיקרוסקופ. פתח את הצינורות לפני הפתח ואחרי השקע של דגם הערקר. הגדר את המשאבה peristaltic ב 10 סל"ד, ולהדליק אותו. הגדל את המהירות במרווחים של 5 סל"ד, כל 4-5 דקות. ודא שאין דליפות.
  5. ב 100 סל"ד, אשר שווה את קצב הזרימה המרבי של צורת הגל הפיזיולוגית של העורק הראשי האנושי (~ 400 מ"ל / דקה), להוסיף חלקיקי פוליסטירן קרבוקסילציה פלואורסצנטי (PS) (2 מיקרומטר, בריכוז של 1.6 מיקרוגרם / מ"ל) ל 300 מ"ל של PBS במיכל במעגל סגור. צלם את אזור העניין כל 10 שניות למשך 1.5 שעות (עדיין תמונות בודדות או וידאו לפי הצורך).

5. תצורת מעגל פתוח: שלב הכביסה

  1. פתח את מלחציים של צינורות הכביסה והפסולת במיכלי 1 L (מהדקים a ו- d), ומיד סגור את המהדקים של צינורות המפרצון והשקע במיכל 300 מ"ל (מהדקים b ו- c) כדי לשנות את המערכת מתצורת מעגל סגורה למעגל פתוח.
  2. תן לרוב המים לזרום ממיכל הכביסה למיכל הפסולת ב-100 סל"ד. לפני שהוא מועבר לחלוטין, לחץ על עצור על המשאבה peristaltic, ולסגור את מהדקי הצינור לפני המפרצון ואחרי השקע של דגם הערקר.
  3. באמצעות המסננים המתאימים, ללכוד תמונות של המודל באזור העניין כדי להראות את התצהיר וההידבקות של חלקיקים לתאים. נתק את דגם הכבישים. בזהירות ובאיטיות להוסיף 4 מ"ל של PBS עם מזרק 10 מ"ל דרך מפרצון הדגם.
  4. חברו "דגם דמה", (שהוא גם דגם תלת-עורי מגומי סיליקון המשמש רק לשטיפה, ללא תאים מתורבתים) במקום דגם העורקנות, ושטפו את המערכת. מוסיפים עוד 1 ליטר מים, ושטפים את המערכת שוב עד שכל המים מועברים ממיכל הכביסה לפסולת. כבה את המשאבה ההפריסטית.

6. רכישת נתונים וניתוח נתונים

  1. לרכוש סרט דיגיטלי של תצהיר חלקיקים באזור העניין עם התמונות שצולמו במהלך הניסוי, באמצעות קוד תוכנה מותאם אישית (ראה טבלת החומרים).
  2. למיפוי התצהיר של החלקיקים לאורך המודל, ציין תמונות מרובות כדי לכסות את אזור העניין הנבדק(איור 4A,B).
    הערה: ניתן לכתוב קוד תוכנה מותאם אישית כדי לכמת את מספר החלקיקים הדבוקים באתר מעניין (קובץ לדוגמה סופק כמידע משלים)17.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

מאמר זה מציג פרוטוקול חדש למיפוי התצהיר של חלקיקים בתוך מודלים של עורקים אנושיים בגודל אמיתי, אשר עשוי לספק פלטפורמה חדשה למחקר אספקת תרופות. באמצעות טכניקת הדפסה תלת-ממדית, נוצר דגם של עורק העורק הראשי האנושי (איור 2). הדגם היה עשוי מגומי סיליקון וזרע עם קרנות הון סיכון אנושיות(איור 3). חשוב לציין, פרוטוקול זה אפשר שכפול של תנאים פיזיולוגיים, במיוחד ביחס לדינמיקה של נוזלים. מערכת זלוף תוכננה להחדיר חלקיקים לביפורציה העורקנית תחת זרימה מתמדת בסדר הגודל של צורת הגל הפיזיולוגית האופיינית לערר החזה. איור 1 מציג את מערכת ההזדוה, המורכבת ממשאבה פריסלטית, מנחת תנודות, מודל ביפורציה מתורבת, צינורות ומיכלי נוזלים.

כדי למפות את התצהיר וההידבקות של החלקיקים המופרקים, המודל העורקי היה בתמונה תחת סטריאוטיקרוסקופ, הן בסוף הניסוי והן לאחר הכביסה (שלב 5.3). התמונות צולמו באמצעות מטרה 2x ו אריחים יחד כדי ליצור תמונה שלמה של המודל. לאחר מכן, מספר החלקיקים דבוקים חושב באמצעות קוד תוכנה מותאם אישית. כדי לבחון את היווצרות דפוס ההדקלציה בביפורציה, חרוזי זכוכית פלואורסצנטיים 10 מיקרומטר הוחדרו לתוך המודל. איור 4A מציג את ההדקלציה, מה שמצביע על כך שהתנאים בתוך המודל מחקים תנאים פיזיולוגיים.

כדי למפות את התצהיר של חלקיקים בתוך הדגם, 2 חלקיקי נ.ב. פלואורסצנטיים פלואורסצנטיים הוחדרו, והדבקתם ב- ECs צולמה (איור 4B,C). חלקיקים אלה דבקו באופן שונה באזורים שונים לאורך הדגם-יותר הידבקות נצפתה מתוך אזור recirculation, שבו מתח גיסת הקיר הוא גבוה. תוצאות אלה נדונו בעבר כדי להראות כי הידבקות של חלקיקים היא פונקציה של הגיאומטריה של המודל, מאפייני פני החלקיקים, ומתח גיסת17. מפות תצהיר אלה הן פשוטות יחסית וניתן להשיגן במהירות לבדיקת הזיקה וההתמקדות של נשאי התרופות בתנאים פיזיולוגיים במודלים ספציפיים למטופל.

Figure 1
איור 1: מערכת ההונאה. מערכת זלוף תוכננה לחדיר נוזלים תחת זרימה מתמדת. הוא מורכב (1) משאבה peristaltic, (2) מנחת תנודה, (3) מודל עורקי 3D מתורבת, ושלושה מיכלי זכוכית: שניים עם קיבולת 1 L (4 ו 6) ושליש שיכול להכיל נוזל 300 מ"ל (5). המערכת יכולה לפעול בשתי תצורות: (i) מעגל פתוח, שבו מהדקים a+d פתוחים ו- b +c סגורים, או (ii) מעגל סגור, שבו מהדקים a+d סגורים ו- b + c פתוחים. אנא לחץ כאן כדי להציג גירסה גדולה יותר של איור זה.

Figure 2
איור 2: תהליך ייצור של דגם ביפורציה בעורק הראשי התלת - א ' (A-C)ביפורציה בעורק הראשי האנושי, מסגרת העובש סביב העורק ותומכי הדפסה זמניים תוכננו. (D, E) הגיאומטריות הודפסו באמצעות מדפסת תלת-ממד. (ו)תומכי ההדפסה הזמניים נחתכו, והמודל היה ליטוש וריסס בלכה. לאחר מכן, שקופיות מלבניות שקופות הודבקו למסגרת מכל הצדדים. גומי סיליקון יצוק כשהדבק היה יבש. קיצור: תלת-ממד = תלת מימדי. אנא לחץ כאן כדי להציג גירסה גדולה יותר של איור זה.

Figure 3
איור 3: זריעת מחשבים אלקטרוניים בתוך דגמים תלת-ממדיים של העורק הראשי. (A)דגם תלת-ממדי בגודל אמיתי של ביפורציה בעורק הראשי האנושי העשוי מגומי סיליקון. המודל היה תרבותי עם ECs אנושי ומלא במדיום תא. (B)הדגם התרבותי הונח על סיבוב ב 37 °C עבור 48 °C. (C)תמונות של ECs תרבותי בתוך הדגם 3D ב Brightfield ו (D) עם DAPI עבור כתמים גרעיניים בכחול. סרגלי קנה מידה = 10 מיקרומטר. קיצורים: ECs = תאי אנדותל; DAPI = 4′,6-דיאמידינו-2-פנילינדול; תלת-ממד = תלת מימדי. אנא לחץ כאן כדי להציג גירסה גדולה יותר של איור זה.

Figure 4
איור 4: זלוף ומיפוי הידבקות של חלקיקים. (A)תמונת קו פסים של ייעול ותגמול (מלבן מקווקו) שנוצר על זלוף של חלקיקי זכוכית פלואורסצנטיים של 10 מיקרומטר בזרימה קבועה של 400 מ"ל / דקה דרך המודל. (B)מפת התצהיר של חלקיקי PS פלואורסצנטיים 2 מיקרומטר (באדום) בתוך הדגם 3D-תרבית. סרגל קנה מידה = 2 מ"מ. (C) הידבקות של החלקיקים (באדום) ל- ECs התרבותי (בכחול-DAPI) בתוך המודל בהגדלה של פי 10. סרגל קנה מידה = 10 מיקרומטר. קיצורים: נ.ב. = פוליסטירן; תלת-ממד = תלת מימדי; ECs = תאי אנדותל; DAPI = 4′,6-דיאמידינו-2-פנילינדול. אנא לחץ כאן כדי להציג גירסה גדולה יותר של איור זה.

מידע נוסף: לחץ כאן כדי להוריד קובץ זה.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

הגישות הנוכחיות לחקר פילוח כלי דם של חלקיקים נופלות בשכפול התנאים הפיזיולוגיים הקיימים בגוף האדם. מוצג כאן פרוטוקול לפברק מודלים משוחזרים תלת-ממדיים של עורקים אנושיים כדי לחקור את מיקוד החלקיקים ל- ECs המרפד את העורק תחת זרימה פיזיולוגית המיושמת באמצעות מערכת זלוף מותאמת אישית. בעת בחירת החומר להדפסה בתלת-ממד, עדיף להשתמש בפלסטיק שקוף כדי למנוע העברת פיגמנטים למודל הסיליקון, שאמור להיות שקוף ככל האפשר. בנוסף, חשוב לבחור חומר שאינו מתמוסס אצטון, אלא הופך רך שביר ולאחר מכן ניתן להסיר בקלות מן המודל.

דגמי התלת-ממד המוצגים עשויים מגומי סיליקון, סיליקון שקוף, מעורבב עם חומר הריפוי שלו. חשוב לוודא כי התערובת היא תמיד בטמפרטורת החדר או מתחת, אחרת crosslinking בין הסיליקון לבין סוכן ריפוי יתחיל לפני degassing ויציקה על התבניות. למרות שפולידימתילסילוקסן יכול לשמש גם לייצור דגמים כאלה (יחס של 1:10 עם ההצלבה שלו), גומי סיליקון עמיד יותר. לאחר טבילת הדגם אצטון כדי להמיס את הפלסטיק, זה חיוני כדי לדגור אותו ב 60 °C לפחות 4 ימים כדי להבטיח אידוי מלא של כל שאריות אצטון. אם כל אצטון נשאר לכוד בתוך המודל, התאים לא יגדלו כראוי. שינוי המדיום לאחר 24 שעות קיבוע של התאים לאחר 48 שעות הם שני השלבים הכרוכים הזרקה ידנית של נוזל באמצעות מזרק 10 מ"ל. לכן חשוב לטבול לאט, אחרת התאים עלולים להישטף החוצה.

מערכת ההזנקות כוללת שני פתחים ושני צינורות שקע. לכל צינור יש מהדק צינור פלסטיק לבקרת זרימה. רוב מערכת הצינורות מורכבת מצינורות דימטר פנימי (ID) 4 מ"מ, למעט הצינורות המהודקים במשאבה, שהם צינורות זיהוי 6 מ"מ. המזהה של הצינורות מהודקים במשאבה יקבע את קצב הזרימה המרבי שניתן להשיג במערכת. מערכת זלוף זו יכולה גם ליצור צורת גל פועמת על ידי העלאת תנודות על הזרימה הממוצעת הקבועה17 על ידי חיבור שקע המדכא להרכבה מתנדנדת, אשר משתלטת על החלק המתנדנד של צורת גל רצויה על קצב הזרימה הקבוע המיוצר על ידי המשאבה הפרייסטלטית. תצורה זו מאפשרת פעולה תחת זרימה מתנדת או בתנאי זרימה קבועים כאשר המתנד כבוי.

במאמר זה, מערכת הזילוף הותאמה אישית בהתבסס על ניסויים עם ביפורציה עורק עורקים אנושי 3D. לכן, אם נעשה שימוש במודלים עורקיים אחרים או צינורות אחרים, כמויות הנוזלים וקצב הזרימה עשויות לדרוש התאמות. במקרים כאלה, המערכת וקצב הזרימה יצטרכו להיות מכוילים, תוך הקפדה על כך שלא ינתקו תאים מקירות הדגם. חשוב מאוד להגדיל בהדרגה את קצב הזרימה במשאבה peristaltic כדי להבטיח כי התאים לא נשטפים עם הזרימה. יתר על כן, חשוב לוודא כי המערכת כולה, כולל צינורות, המודל, כמו גם את המיכל מלאים בנוזלים (למשל.במקרה זה, הוא היה מלא בנפח כולל של 300 מ"ל של נוזל). בנוסף, לפני ואחרי כל ניסוי, יש לשטוף את המערכת במים מזוקקים בתצורת מעגל פתוח.

דם יכול גם להיות perfused לתוך המודלים באמצעות מערכת זלוף17. במקרה זה, יש לנקוט זהירות נוספת כדי למנוע כל דליפה, במיוחד אם דם אנושי משמש. יתר על כן, שלב הכביסה הוא קריטי כמו אקונומיקה חייב להיות perfused בסוף הניסוי כדי להבטיח שטיפה מלאה של הדם. לאחר אקונומיקה, מים צריכים להיות perfused כאמור בפרוטוקול. חשוב לציין כי בנייר זה נעשה שימוש בחלקיקי נ.ב. קרבוקסילציה, בעלי הרכב אחיד וחלוקת גודל צרה. יתר על כן, חלקיקים אלה לדבוק בתאים בעיקר באמצעות אינטראקציות אלקטרוסטטיות. עם זאת, ניתן להשתמש בננו-דריירי תרופות אחרים, ויש לבחון פילוח ספציפי גם עם חלקיקים בעלי תווית ליגנד, למשל., למולקולת הידבקות אנטי-תאית 1 ומולקולת הידבקות תאי אנדותל נגד טסיות דם 1, אשר יגבירו את הצטברות החלקיקים ל- ECs באתר העניין.

בנוסף, בפרוטוקול זה, ECs תוקנו לפני חיבור המודלים למערכת זלוף והזרקה של החלקיקים. הידבקות של חלקיקים לתאים קבועים מייצגת את השלב הראשון בתהליך הכריכה ולכן, ניסויים עם תאים חיים צריכים להתבצע, שבו הפנמה של חלקיקים עלולה להתרחש בשלבים מאוחרים יותר של תהליך ההדבקה. פרוטוקול זה יכול לשמש לייצור מודלים עורקיים תלת-ממדיים לחקר נשאי סמים בתנאים פיזיולוגיים. הגישה המתוארת עשויה לסייע בחקר מסירת סוכנים בתנאים ספציפיים למטופל.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

המחברים אינם מצהירים על ניגודי עניינים.

Acknowledgments

עבודה זו נתמכה על ידי הקרן הישראלית למדע (מענק ISF # 902/18). המלגה של מריה חורי נתמכה על ידי תוכנית הדוקטורט לנשים של הברונית אריאן דה רוטשילד.

Materials

Name Company Catalog Number Comments
3D printer FormLabs PKG-F2-REFURB
Acetone, absolute (AR grade)
Connectors Nordson Medical FTLL013-1 Female Luer
FTLL230-1 Female Luer
FTLL360-1 Female Luer
LP4-1 Male Luer Integral Lock
Damper Thermo-Fisher Scientific DS2127-0250 Nalgene Polycarbonate, Validation Bottle
Damper Cover Thermo-Fisher Scientific 2162-0531 Nalgene Filling/Venting Closures
Elastosil Elastosil RT 601 A Wacker 60003805
Elastosil RT 601 B Wacker 60003817 The crosslinker
Endothelial Cell Media ScienCell 1001
Fibrontectin Sigma Aldrich F0895-5mg
HUVEC Lonza CC-2519
Isopropyl alcohol, AR grade 99.5% Remove plastic dust from the sanded model
Lacquer Rust-Oleum 2X-Ultra cover Gloss Clear
Matlab Mathworks https://www.mathworks.com/products/matlab.html
Microscope Nikon SMZ25
Microscope Camera Nikon DS-Qi2
Peristaltic pump Watson Marlow 530U IP31 With 2 pumpheads: 313D
Plastic tube clamp Quickun 1-2240-stopvalve-2pcs
Polystyrene Particles  Thermo-Fisher Scientific  F8827  Diameter = 2 µm
Printer resin FormLabs RS-F2-GPCL-04
Rotator ELMI Ltd. Intelli-Mixer RM-2
Solidworks  SolidWorks Corp., Dassault Systèmes https://www.solidworks.com/
Tubing Watson Marlow 933.0064.016 Tubing for the pump: 6.4 mm ID
All the other tubing: Silicon tubing: 4 mm ID

DOWNLOAD MATERIALS LIST

References

  1. Chiu, J. J., et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. Journal of Biomechanics. 36 (12), 1883-1895 (2003).
  2. Martorell, J., et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovascular Research. 103 (1), 37-46 (2014).
  3. Karino, T., Goldsmith, H. L. Flow behaviour of blood cells and rigid spheres in an annular vortex. Philosophical transactions of the Royal Society of London. Series B, Biological. 279 (967), 413-445 (1977).
  4. Goldsmith, H. L., Karino, T. Platelets in a region of disturbed flow. Transactions - American Society for Artificial Internal Organs. 23, 632-638 (1977).
  5. Farcas, M. A., Rouleau, L., Fraser, R., Leask, R. L. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomedical Engineering Online. 8, 30 (2009).
  6. Peng, B., et al. Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Research Letters. 10 (1), 942 (2015).
  7. Shah, S., Liu, Y., Hu, W., Gao, J. Modeling particle shape-dependent dynamics in nanomedicine. Journal of Nanoscience and Nanotechnology. 11 (2), 919-928 (2011).
  8. Hossain, S. S., Hughes, T. J., Decuzzi, P. Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomechanics and Modeling in Mechanobiology. 13 (3), 585-597 (2014).
  9. Charoenphol, P., Huang, R. B., Eniola-Adefeso, O. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials. 31 (6), 1392-1402 (2010).
  10. Ta, H. T., Truong, N. P., Whittaker, A. K., Davis, T. P., Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opinion on Drug Delivery. 15 (1), 33-45 (2018).
  11. Cooley, M., et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale. 10 (32), 15350-15364 (2018).
  12. Jiang, X. Y., et al. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine. 13 (3), 999-1010 (2017).
  13. Zarins, C. K., et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research. 53 (4), 502-514 (1983).
  14. Chien, S. Effects of disturbed flow on endothelial cells. Annals of Biomedical Engineering. 36 (4), 554-562 (2008).
  15. Malek, A. M., Alper, S. L., Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282 (21), 2035-2042 (1999).
  16. Glagov, S., Zarins, C., Giddens, D. P., Ku, D. N. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine. 112 (10), 1018-1031 (1988).
  17. Khoury, M., Epshtein, M., Zidan, H., Zukerman, H., Korin, N. Mapping deposition of particles in reconstructed models of human arteries. Journal of Controlled Release. 318, 78-85 (2020).

Tags

ביו-הנדסה גיליון 169 הנדסה ביו-רפואית הדפסה בתלת-ממד מודלים עורקיים ננו-רפואה מחלות לב וכלי דם טרשת עורקים פילוח כלי דם
<em>אין ויטרו</em> מודלים עורקיים בתרבית תאים 3D לחקר פילוח תרופות כלי דם תחת זרימה
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Khoury, M., Epshtein, M., Korin, N.More

Khoury, M., Epshtein, M., Korin, N. In Vitro 3D Cell-Cultured Arterial Models for Studying Vascular Drug Targeting Under Flow. J. Vis. Exp. (169), e62279, doi:10.3791/62279 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter