Summary

通过红外激光辅助微模式控制细胞几何

Published: July 10, 2021
doi:

Summary

这里提出的协议使微型模式能够自动制造,使细胞形状标准化,以研究哺乳动物细胞中的细胞骨结构。这种用户友好型技术可以与市售成像系统建立,不需要标准细胞生物学实验室无法使用的专用设备。

Abstract

微模式是细胞生物学界的一项既定技术,用于研究细胞隔间的形态和功能之间的联系,同时规避自然细胞与细胞变异引起的并发症。为了标准化细胞形状,细胞要么被限制在3D模具中,要么通过粘合岛控制粘合几何形状。然而,基于光刻和深紫外线蚀刻的传统微模式技术在很大程度上依赖于洁净室或专用设备。在这里,我们展示了一种红外激光辅助微模式技术(微光托邦),该技术由道尔等人修改,可通过市售成像系统方便设置。在此协议中,我们使用尼康 A1R MP+ 成像系统,通过红外 (IR) 激光器生成微缩精度的微模式,从而消融聚乙烯醇涂层盖片上的预设区域。我们采用自定义脚本,在未配备硬件自动对焦的系统中实现高效、准确的自动模式制造。我们表明,这种红外激光辅助微模式(微光托位)协议导致定义的模式,细胞只附加和采取所需的形状。此外,由于细胞形状的标准化,大量细胞的数据可以平均化。与此协议生成的模式,结合高分辨率成像和定量分析,可用于相对较高的吞吐量屏幕,以识别干扰形式和函数之间联系的分子玩家。

Introduction

细胞形状是组织形态形成1、细胞迁移2、细胞增殖3和基因表达4等基本生物过程的关键决定因素。细胞形状的变化是由细胞细胞的动态重新排列之间的复杂平衡驱动的,细胞体的动态重新排列使等离子膜变形,外在因素,如施加在细胞上的外力,以及细胞细胞和细胞基质粘附5的几何形状。例如,迁移间质细胞,在前沿聚合一个密集的活性蛋白网络,推动等离子膜向前推进,并创建一个宽的跛脚皮6,而活体肌素收缩性收回细胞的狭窄尾随边缘,以分离细胞从其当前位置7,8。破坏信号事件,导致这种特殊的细胞骨结构扰动形状和极性,并减缓细胞迁移9。此外,上皮板弯曲在胃结石需要基于肌素的阿皮收缩,导致细胞及其邻居成为楔形10。虽然这些研究强调了细胞形状的重要性,但细胞形状固有的异质性阻碍了确定将形态与功能联系起来的机制的努力。

为此,在过去三十年中,已经开发出许多操纵细胞形状的方法。这些方法通过用三维模具约束细胞或通过细胞外基质 (ECM) 蛋白质的图案沉积控制细胞几何学来达到他们的目标,这种技术称为微模式11。在这里,我们将回顾一些技术,已经获得了多年来的流行。

最初作为微电子应用的方法而开创,软光刻为基础的微接触印刷已明确成为崇拜者的最爱12。主晶圆首先通过选择性地将光层涂层硅基板的区域暴露在光照射下制造,留下图案表面13。然后,将弹性体(如 PDMS)倒入主晶圆上,生成一个软”标记”,将 ECM 蛋白质转移到所需的基板11、14上。一旦制造,主晶圆可用于铸造许多 PDMS 邮票,产生高可重复性的微模式12。然而,由于光刻过程冗长,这些模式无法轻易调整。这个过程还需要高度专业化的设备和清洁室,这些设备和洁净室通常不在生物学部门。

最近,据报道,使用深紫外线进行直接印刷是为了规避传统光刻方法带来的限制。深紫外线通过光罩定向到涂有聚L-lysine-嫁接-聚乙二醇的玻璃盖唇的选择性区域。暴露在深紫外线下的化学组在不使用感光连杆的情况下进行光转换,使 ECM 蛋白15具有结合性。缺乏感光链接器使图案盖片在室温下保持稳定超过7个月15。这种方法避免使用洁净室和光刻设备,需要较少的专业培训。然而,对光罩的要求仍然给需要随时可用的模式变化的实验带来了巨大的障碍。

除了通过在二维表面上控制 ECM 蛋白质沉积来操纵细胞几何的方法外,其他方法还试图通过将细胞限制在 3D 微结构中来控制细胞形状。许多研究已经调整了软石版印刷为基础的方法,以产生3D,而不是2D,PDMS室,以调查在胚胎,细菌,酵母和植物16,17,18,19的形状依赖生物过程。双光子聚合(2PP)还率先采用微晶硅技术,可制造出分辨率为20纳米的复杂3D水凝胶脚手架。2PP依赖于双光子吸附原理,即在股骨脉冲中交付的两个光子同时被分子(在此情况下的光启动器)吸收,从而实现光聚合物21的局部聚合。这项技术已被大量用于打印3D脚手架,模仿人体组织的原生ECM结构,并已被证明诱导低光化学损伤细胞22。

10年前,微型磷酸盐的首次亮相让研究人员有机会制造微型模式,同时避免无法访问和专用的设备。微光托管通过使用红外激光23、24在活性玻璃表面涂上多乙烯醇(PVA)的选择性区域,在微米尺度上创建模式。ECM 蛋白仅附着在底层玻璃表面,而不是 PVA,然后作为生化线索,使控制扩散动力学和细胞形状。这种方法还具有优越的灵活性,因为模式可以随时实时更改。在这里,我们使用商用多光子成像系统提供微光托邦的分步协议。所述协议专为快速和自动地制造大型图案而设计。我们证明,这些模式通过限制细胞-ECM粘附的几何形状,有效地控制了细胞形状。最后,我们证明,描述的模式技术调节细胞的组织和动态。

Protocol

1. 盖滑预处理 准备吱吱作响的干净盖片,如沃特曼-斯托勒,1998年25年描述。 准备 1% (3-氨基丙基) 三氧硅烷 (APTMS) 溶液,并在溶液中孵育盖片 10 分钟,轻轻搅拌。确保盖片在解决方案中自由移动。 用dH2O清洗两次盖片,每次5分钟。 准备 0.5% 谷氨酸 (GA) 溶液,并在摇床上将溶液中的盖片孵育 30 分钟。对于 25 个盖片,使用 50 mL 的谷?…

Representative Results

通过微观模式获得的实验数据的质量在很大程度上取决于模式的质量。为了确定使用上述方法生成的图案的质量,我们首先使用反射显微镜来评估盖唇照片消融区域的形状和大小。我们发现,每个图案看起来非常类似于消融面膜,并显示清晰的板和表面,反射光均匀 (图2B).各种形状和尺寸可以打印取决于所需的细胞骨架构,但我们使用的十字弓形状,最适合我们的目的。…

Discussion

上述结果表明,所述的 IR 激光辅助微模式(微光托管)协议提供了各种形状的可重复粘附模式,能够操作细胞形状和细胞细胞结构。虽然在显微相位法出现之前和之后都开发出许多微模式方法,但这种方法具有若干优点。首先,它不需要专业设备和清洁室,通常只在工程部门内找到。事实上,随着多光子显微镜在生物学部门越来越常见,显微光学扩展了多光子显微镜的应用,并增加了潜在的用户…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了康诺特基金新调查员奖、加拿大创新基金会、NSERC发现赠款计划(授予RGPIN-2015-05114和RGPIN-2020-05881)、曼彻斯特大学和多伦多大学联合研究基金和多伦多大学XSeed项目的支持。C.T. 得到了国家人权委员会USRA研究金的支持。

Materials

(3-Aminopropyl)trimethoxysilane Aldrich 281778
10 cm Cell Culture Dish VWR 10062-880 Polysterene, TC treated, vented
25X Apo LWD Water Dipping Objective Nikon MRD77225
3.5 cm Cell Culture Dish VWR 10861-586 Polysterene, TC treated, vented
4',6-Diamidino-2-Phenylindole (DAPI) Thermo 62248 1mg/mL dihydrochloride solution
Bovine Serine Albumin BioShop ALB005
Dulbecco's Phosphate-Buffered Saline Wisent 311-425-CL
Ethanolamine Sigma-Aldrich E9508
Fibronectin Sigma-Aldrich FC010 1mg/mL in pH 7.5 buffer
Fibronectin Antibody BD 610077 Mouse
Fiji ImageJ Version 1.53c
Fluorescent Phalloidin Invitrogen A12380 568nm
Glass Coverslip VWR 16004-302 22 × 22 mm
Glutaraldehyde Electron Microscopy Sciences 16220 25% aqueous solution
Hydrochloric Acid Caledon 6025-1-29 37% aqueous solution
IR Laser Coherent Chameleon Vision
Minimal Essential Medium α Gibco 12561-056
Mounting Medium Sigma F4680
Mouse Secondary Antibody Cell Signaling Technology 4408S Goat, 488nm
Multi-Photon Microscope Nikon A1R MP+
Myosin Light Chain Antibody Cell Signaling Technology 3672S Rabbit
NIS Elements Nikon Version 5.21.03
Nitric Acid Caledon 7525-1-29 70% aqueous solution
Photoshop Adobe Version 21.2.1
Pluronic F-127 Sigma P2443 Powder
Poly(vinyl alchohol) Aldrich 341584 MW 89000-98000, 98% hydrolyzed
Rabbit Secondary Antibody Cell Signaling Technology 4412S Goat, 488nm
Shaker VWR 10127-876 Alsoknown as analog rocker
Sodium Borohydride Aldrich 452882 Powder
Sodium Hydroxide Sigma-Aldrich S8045
Sodium Phosphate Dibasic Sigma S5136 Powder
Sodium Phosphate Monobasic Sigma S5011 Powder
Spyder Anaconda 4.1.4
Trypsin Wisent 325-042-CL 0.05% aqueous solution with 0.53mM EDTA

Riferimenti

  1. Harris, T. J. C., Sawyer, J. K., Peifer, M. How the Cytoskeleton Helps Build the Embryonic Body Plan Models of Morphogenesis from Drosophila. Current Topics in Developmental Biology. 89, 55-85 (2009).
  2. Keren, K., et al. Mechanism of shape determination in motile cells. Nature. 453 (7194), 475-480 (2008).
  3. Castor, L. N. Control of Division by Cell Contact and Serum Concentration in Cultures of 3T3 Cells. Experimental Cell Research. 68 (1), 17-24 (1971).
  4. Jain, N., Iyer, K. V., Kumar, A., Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proceedings of the National Academy of Sciences. 110 (28), 11349-11354 (2013).
  5. Paluch, E., Heisenberg, C. -. P. Biology and Physics of Cell Shape Changes in Development. Current Biology. 19 (17), 790-799 (2009).
  6. Pollard, T. D., Borisy, G. G. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell. 112 (4), 453-465 (2003).
  7. Ridley, A. J., et al. Cell Migration: Integrating Signals from Front to Back. Science. 302 (5651), 1704-1709 (2003).
  8. Cramer, L. P. Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology. 25 (5), 591-599 (2013).
  9. Lee, J., Ishihara, A., Oxford, G., Johnson, B., Jacobson, K. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature. 400 (6742), 382-386 (1999).
  10. Leptin, M. Gastrulation Movements: the Logic and the Nuts and Bolts. Developmental Cell. 8 (3), 305-320 (2005).
  11. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., Ingber, D. E. Geometric Control of Cell Life and Death. Science. 276 (5317), 1425-1428 (1997).
  12. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. E. Soft Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering. 3, 335-373 (2001).
  13. Cirelli, R. A., Watson, G. P., Nalamasu, O. Techniques and Processing: Surface, Micro-, and Nanoscale Processing. Encyclopedia of Materials: Science and Technology. , 6441-6448 (2001).
  14. Stricker, J., Aratyn-Schaus, Y., Oakes, P. W., Gardel, M. L. Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions. Biophysical Journal. 100 (12), 2883-2893 (2011).
  15. Azioune, A., Storch, M., Bornens, M., Théry, M., Piel, M. Simple and rapid process for single cell micro-patterning. Lab on a Chip. 9 (11), 1640-1642 (2009).
  16. Chang, F., Atilgan, E., Burgess, D., Minc, N. Manipulating Cell Shape by Placing Cells into Microfabricated Chambers. Methods in Molecular Biology. 1136, 281-290 (2014).
  17. Takeuchi, S., DiLuzio, W. R., Weibel, D. B., Whitesides, G. M. Controlling the Shape of Filamentous Cells of Escherichia Coli. Nano Letters. 5 (9), 1819-1823 (2005).
  18. Minc, N., Boudaoud, A., Chang, F. Mechanical Forces of Fission Yeast Growth. Current Biology. 19 (13), 1096-1101 (2009).
  19. Durand-Smet, P., Spelman, T. A., Meyerowitz, E. M., Jönsson, H. Cytoskeletal organization in isolated plant cells under geometry control. Proceedings of the National Academy of Sciences. 117 (29), 17399-17408 (2020).
  20. Haske, W., et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography.pdf. Optics Express. 15 (6), 3426-3436 (2007).
  21. Song, J., Michas, C., Chen, C. S., White, A. E., Grinstaff, M. W. From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization. Advanced Healthcare Materials. 9 (1), 1901217 (2020).
  22. Torgersen, J., Qin, X., Li, Z., Ovsianikov, A., Liska, R., Stampfl, J. Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Advanced Functional Materials. 23 (36), 4542-4554 (2013).
  23. Doyle, A. D., Wang, F. W., Matsumoto, K., Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. The Journal of Cell Biology. 184 (4), 481-490 (2009).
  24. Doyle, A. D. Generation of Micropatterned Substrates Using Micro Photopatterning. Current Protocols in Cell Biology. 45 (1), 1-35 (2009).
  25. Waterman-Storer, C. M. Microtubule/Organelle Motility Assays. Current Protocols in Cell Biology. 00 (1), 1-21 (1998).
  26. Inoué, S., Spring, K. R. . Video Microscopy: The Fundamentals. , (1997).
  27. Schneider, I. C., Hays, C. K., Waterman, C. M. Epidermal Growth Factor-induced Contraction Regulates Paxillin Phosphorylation to Temporally Separate Traction Generation from De-adhesion. Molecular Biology of the Cell. 20 (13), 3155-3167 (2009).
  28. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nature Methods. 2 (12), 932-940 (2005).
  29. Xing, J., Cao, Y., Yu, Y., Li, H., Song, Z., Yu, H. In Vitro Micropatterned Human Pluripotent Stem Cell Test (µP-hPST) for Morphometric-Based Teratogen Screening. Scientific Reports. 7 (1), 8491 (2017).
  30. Ankam, S., Teo, B. K., Kukumberg, M., Yim, E. K. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis. 9 (3), 0 (2013).
check_url/it/62492?article_type=t

Play Video

Citazione di questo articolo
Yang, S., Tuo, C., Iu, E., Plotnikov, S. V. Control of Cell Geometry through Infrared Laser Assisted Micropatterning. J. Vis. Exp. (173), e62492, doi:10.3791/62492 (2021).

View Video