Summary

Isolation of Total RNA from Pseudomonas aeruginosa within Biofilms for Measuring Gene Expression

Published: September 24, 2021
doi:

Summary

This protocol presents a method to isolate RNA from Pseudomonas aeruginosa biofilms grown in chamber slides for high throughput sequencing.

Abstract

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes infections in the airways of cystic fibrosis (CF) patients. P. aeruginosa is known for its ability to form biofilms that are protected by a matrix of exopolysaccharides. This matrix allows the microorganisms to be more resilient to external factors, including antibiotic treatment. One of the most common methods of biofilm growth for research is in microtiter plates or chambered slides. The advantage of these systems is that they allow for the testing of multiple growth conditions, but their disadvantage is that they produce limited amounts of biofilm for RNA extraction. The purpose of this article is to provide a detailed, step by step protocol on how to extract total RNA from small amounts of biofilm of sufficient quality and quantity for high throughput sequencing. This protocol allows for the study of gene expression within these biofilm systems.

Introduction

Most chronic bacterial infections, such as pulmonary infections in cystic fibrosis (CF) patients and prosthesis related infections, are characterized by the growth of organisms within biofilms. Biofilms1 are communities of bacteria encased in a matrix composed primarily of polysaccharides2. Bacteria within biofilms can be slow growing, metabolically dormant, and in anaerobic, hypoxic conditions. Biofilms are more resistant to antibiotics due to factors such as decreased antibiotic penetration, increased expression of drug efflux pumps, and decreased cell division3. For these and other reasons, they are of great research interest.

In order to accurately study persistent infections such as chronic Pseudomonas aeruginosa infections in CF patients, the growth conditions seen with biofilm formation need to be accurately reflected in vitro. A common, high throughput method is to grow them in chamber slides or microtiter plates and monitor biofilm formation by confocal microscopy4. It is known that a key regulator in the transition from a planktonic, or free-floating, to biofilm bacterial lifestyle is the secondary messenger, cyclic-di-GMP5. Increased cyclic-di-GMP levels increase the expression of specific genes that promote biofilm growth. Small non-coding regulatory RNAs and quorum sensing also play important roles in regulation of biofilm formation5. Measuring biofilm gene expression by sequencing extracted bacterial RNA can be challenging. P. aeruginosa, for example, produces three exopolysaccharides (Psl, Pel and alginate), which are produced in significant amounts in biofilms6,7. These polysaccharides can interfere with RNA extraction and purification leading to impure preparations containing low levels of bacterial mRNA8. Commercially available RNA extraction kits are able to produce high quality RNA from planktonic bacterial cultures but may not work as well with biofilm cultures9,10,11. There are a few commercial RNA extraction kits that claim to work for biofilms, one of which we use with this method.

In this manuscript, we describe the procedures for growing P. aeruginosa biofilms in chamber slides and extracting bacterial mRNA for high throughput sequencing12,13. Utilizing clinical isolates collected from sputum samples from CF patients, we demonstrate that these methods can be used for isolates with varying growth characteristics. In comparison to prior publications, this protocol is described in detail to enable better success in studying bacterial biofilm gene expression11,14,15,16.

Protocol

The Research Ethics Board (REB) is required for the collection and processing of sputum samples from human subjects. This study was approved by the Hospital for Sick Children (REB#1000019444). Research Ethics Board (REB) is required to collect and store sputum samples from human subjects. These studies were approved by the Hospital for Sick Children REB#1000058579. 1. Biofilm formation Grow Pseudomonas aeruginosa isolates obtained from the sputum samples of CF patients use…

Representative Results

The general overview of the method is shown in Figure 1. We previously used 8-well chamber slides to grow P. aeruginosa biofilms and expose them to antibiotics before then examining them via confocal microscopy at different time points12,13. This method can be used to extract total RNA directly from biofilms grown in this system in order to study gene expression changes post treatment. This protocol has been optimized for <e…

Discussion

Total RNA is successfully extracted from 17 different bacterial biofilm samples in triplicate, yielding a total of 51 samples. The forty-nine RNA libraries are pooled and successfully sequenced. Overall, this validates our quality criteria with a 96 % success rate even though more than half the samples are considered to be low abundance and of sub-optimal quality34,35,36,37.

<p class="jove_…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Author contributions: P.W., Y.Y. and V.W were involved in conceptualizing the study. K.G., L.J., A.M. and P.W. optimized the lab protocols. Funding for K.G. was supported by the Student Work Placement Program subsidy through BioTalent Canada.

Materials

Agilent 2100 Bioanalyzer Agilent G2939BA Automated electrophoresis of biomolecules
Agilent RNA 6000 pico kit Agilent 5067-1513 High sensitivity RNA electrophoresis chip to generate a RIN
DNA/RNA Lysis Buffer Zymo Research D7001-1-50 A guanidinium thiocyanate and N-Lauroylsarcosine-based lysis buffer sold as part of a nucleic acid purification kit
DNA/RNA Prep Buffer Zymo Research D7010-2-10 A guanidine HCl and ethanol buffer used for purification of DNA and RNA
DNA/RNA Shield Zymo Research R1100-50 DNA and RNA preservation/protection reagent
DNA/RNA Wash Buffer Zymo Research D7010-3-6 A salt and ethanol buffer used for purification of DNA and RNA
DNBSEQ G-400RS MGI G-400RS High throughput sequencer
MGIEasy RNA Directional Library Prep Set MGI 1000006386 Generate libraries for MGI high-throughput sequencing platforms from total RNA.
Mini-Beadbeater-96 BioSpec 1001 A high energy, high throughput cell disrupter
NEBNext rRNA Depletion Kit (bacteria) New England Biolabs E7850X Efficient and specific depletion of bacterial rRNA (5S, 16S, 23S)
Nunc Lab-Tek II chamber slide system Thermo Fisher Scientific 154534 8-well chamber slide with removable wells
Qubit Fluorometer Thermo Fisher Scientific Q33238 Fluorometer for DNA, RNA and proteins
Qubit RNA HS Assay Kit Thermo Fisher Scientific Q32852 High sensitivity fluorometric assay to measure RNA concentration
Spin-Away Filters Zymo Research C1006-50-F Silica-based spin column primarily used to bind or remove genomic DNA
Sterile inoculation loops, 1 uL Sarstedt 86.1567.050 Sterile, disposable inoculation loops for manipulation of microorganisms
ZR BashingBead Lysis tubes Zymo Research S6003-50 2 mL tubes containing 0.1 and 0.5 mm bead lysis matrix for homogenizing biological samples
Zymo Spin IIICG Columns Zymo Research C1006-50-G Silica-based spin column for purification of DNA and RNA
Zymo-Spin III-HRC Filters Zymo Research C1058-50 Remove inhibitors such as polyphenolic compounds, humic/fulvic acids, tannins, melanin, etc.
Zymobiomics DNA/RNA Miniprep kit Zymo Research R2002 DNA and RNA dual extraction kit
Zymobiomics HRC Prep solution Zymo Research D4300-7-30 To be used with Zymo-Spin III-HRC Filters to remove PCR inhibitors

Riferimenti

  1. Beaudoin, T., Waters, V. Infections With Biofilm Formation: Selection of Antimicrobials and Role of Prolonged Antibiotic Therapy. The Pediatric Infectious Disease Journal. 35 (6), 695-697 (2016).
  2. Bjarnsholt, T., et al. The in vivo biofilm. Trends in Microbiology. 21 (9), 466-474 (2013).
  3. Folsom, J. P., et al. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiology. 10, 294 (2010).
  4. Azeredo, J., et al. Critical review on biofilm methods. Critical Reviews in Microbiology. 43 (3), 313-351 (2017).
  5. Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M., Hoiby, N. Applying insights from biofilm biology to drug development – can a new approach be developed. Nature Reviews Drug Discovery. 12 (10), 791-808 (2013).
  6. Colvin, K. M., et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental Microbiology. 14 (8), 1913-1928 (2012).
  7. Hentzer, M., et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology. 183 (18), 5395-5401 (2001).
  8. Cury, J. A., Koo, H. Extraction and purification of total RNA from Streptococcus mutans biofilms. Analytical Biochemistry. 365 (2), 208-214 (2007).
  9. Francavilla, M., et al. Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta. Current Medicinal Chemistry. 19 (18), 3058-3067 (2012).
  10. Atshan, S. S., et al. Improved method for the isolation of RNA from bacteria refractory to disruption, including S. aureus producing biofilm. Gene. 494 (2), 219-224 (2012).
  11. Franca, A., Melo, L. D., Cerca, N. Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis. BMC Research Notes. 4, 572 (2011).
  12. Jurcisek, J. A., Dickson, A. C., Bruggeman, M. E., Bakaletz, L. O. In vitro biofilm formation in an 8-well chamber slide. The Journal of Visusalized Experiments. (47), e2481 (2011).
  13. Beaudoin, T., Kennedy, S., Yau, Y., Waters, V. Visualizing the effects of sputum on biofilm development using a chambered coverglass model. The Journal of Visusalized Experiments. (118), e54819 (2016).
  14. Cockeran, R., et al. Biofilm formation and induction of stress response genes is a common response of several serotypes of the pneumococcus to cigarette smoke condensate. The Journal of Infection. 80 (2), 204-209 (2020).
  15. Bisht, K., Moore, J. L., Caprioli, R. M., Skaar, E. P., Wakeman, C. A. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. npj Biofilmsand Microbiomes. 7 (22), (2021).
  16. Harrison, A., et al. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms and Microbiomes. 5 (1), 33 (2019).
  17. Sousa, C., Franca, A., Cerca, N. Assessing and reducing sources of gene expression variability in Staphylococcus epidermidis biofilms. BioTechniques. 57, 295-301 (2014).
  18. Boom, R. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology. 28 (3), 495-503 (1990).
  19. . Re: How do silica based RNA spin columns only bind RNA and not DNA Available from: https://www.researchgate.net/post/How_do_silica_based_RNA_spin_columns_only_bind_RNA_and_not_DNA/60b017bffa5c4151cac1c/citation/download (2021)
  20. . A complete guide to how nucleic extraction kits work Available from: https://bitesizebio.com/13516/how-dna-extraction-rna-miniprep-kits-work/ (2021)
  21. Qubit RNA HS Assay Kit User Guide. Thermo Fisher Scientific Available from: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FQubit_RNA_HS_Assay_UG.pdf&title=VXNlciBHdWlkZTogUXViaXQgUk5BIEhTIEFzc2F5IEtpdHM (2015)
  22. . RNA Integrity Number (RIN) – Standardization of RNA Quality Control (Application report # 5989-1165EN) Available from: https://www.agilent.com/cd/library/applications/5989-1165EN.pdf (2016)
  23. Schroeder, A., et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 7, 3 (2006).
  24. Culviner, P. H., Guegler, C. K., Laub, M. T. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 11 (2), (2020).
  25. MGIEasy RNA Directional Library Prep Set User Manual verA2. MGI Tech Co Available from: https://en.mgi-tech.com/products/reagents_info/14/ (2020)
  26. Afgan, E., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research. 46, 537-544 (2018).
  27. Bolger, A. M., Lohse, M., Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. , (2014).
  28. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research. 44 (1), (2016).
  29. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. , (2013).
  30. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25 (16), (2009).
  31. Liao, Y., Shi, W. Read trimming is not required for mapping and quantification of RNA-seq reads at the gene level. NAR Genomics and Bioinformatics. 2 (3), (2020).
  32. . Calculating Mapping Statistics from a SAM/BAM file using SAMtools and awk Available from: https://sarahpenir.github.io/bioinformatics/awk/calculating-mapping-stats-from-a-bam-file-using-samtools-and-awk/ (2019)
  33. Haile, S., et al. Evaluation of protocols for rRNA depletion based RNA sequencing of nanogram inputs of mammalian total RNA. PLoS ONE. 14 (10), 0224578 (2019).
  34. Schuierer, S., et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics. 18 (442), (2017).
  35. Shanker, S., et al. Evaluation of Commercially Available RNA Amplification Kits for RNA Sequencing Using Very Low Input Amounts of Total RNA. Journal of Biomolecular Techniques. 26 (1), (2015).
  36. Adiconis, X., et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nature Methods. 10, 623-629 (2013).
  37. Conesa, A., et al. A survey of best practices for RNA-seq data analysis. Genome Biology. 17 (13), (2016).
  38. . Coverage depth recommendations Available from: https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html (2021)
  39. What is a good sequencing depth for bulk RNA-Seq. ECSEQ Bioinformatics Available from: https://www.ecseq.com/support/ngs/what-is-a-good-sequencing-death-for-bulk-rna-seq (2019)
  40. . Sequencing coverage and breadth of coverage Available from: https://www.reneshbedre.com/blog/sequencing-coverage.html (2021)
  41. Dotsch, A., et al. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One. 7 (2), 31092 (2012).
  42. Chen, Y., et al. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. npj Biofilms and Microbiomes. 5 (1), (2019).
  43. Thoming, J. G., et al. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. NPJ Biofilms and Microbiomes. 6, 2 (2020).
  44. Soares, A., et al. Understanding ciprofloxacin failure in Pseudomonas aeruginosa biofilm: persister cells survive matrix disruption. Frontiers in Microbiology. 10, 2603 (2019).
  45. Whiteley, M., et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 413, (2001).
  46. Chomczynski, P., Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols. 1, (2006).
  47. Liu, Y., Zhou, J., White, K. P. RNA-seq differential expression studies: more sequence or more replication. Bioinformatics. 30 (3), (2014).
  48. . Methods of RNA Quality Assessment Available from: https://www.promega.ca/resources/pubhub/methods-of-rna-quality-assessment/ (2021)
This article has been published
Video Coming Soon
Keep me updated:

.

Citazione di questo articolo
Guttman, K., Wang, P., Jackson, L., Morris, A., Yau, Y., Waters, V. Isolation of Total RNA from Pseudomonas aeruginosa within Biofilms for Measuring Gene Expression. J. Vis. Exp. (175), e62755, doi:10.3791/62755 (2021).

View Video