Summary

用于泪腺干细胞的三维无血清培养系统

Published: June 02, 2022
doi:

Summary

用于成体泪腺(LG)干细胞的三维无血清培养方法对于诱导LG类器官形成并分化为腺泡或导管状细胞已经确立。

Abstract

基于泪腺(LG)干细胞的治疗是治疗泪腺疾病的有希望的策略。然而,缺乏可靠的无血清培养方法来获得足够数量的LG干细胞(LGSC)是进一步研究和应用的一个障碍。用于成人小鼠LGSC的三维(3D),无血清培养方法已经建立并在此处显示。LGSC可以连续传代并诱导分化为腺泡或导管样细胞。

对于LGSC原代培养,用分散酶,胶原酶I和胰蛋白酶 – EDTA消化来自6-8周龄小鼠的LGs。将总共1×104 个单细胞接种到24孔板的每个孔中的80μL基质凝胶泪腺干细胞培养基(LGSCM)基质中,并用20μL基质凝胶-LGSCM基质预涂。将混合物在37°C下孵育20分钟后固化,并加入600μLLGSCM。

对于LGSC维持,通过分散酶和胰蛋白酶- EDTA将培养7天的LGSC分解成单细胞。根据LGSC原代培养中使用的方法植入和培养单个细胞。LGSC可以传代40次以上,并连续表达干细胞/祖细胞标志物Krt14,Krt5,P63和巢蛋白。在LGSCM中培养的LGSC具有自我更新能力,可以在 体外体内分化成腺泡或导管样细胞。

Introduction

泪腺干细胞(LGSC)维持泪腺(LG)细胞更新,是腺泡和导管细胞的来源。因此,LGSC移植被认为是治疗严重炎症损伤和水缺乏性干眼病(ADD)的替代方法123。Tiwari等人使用胶原蛋白I和基质凝胶分离和培养原代LG细胞,并补充了几种生长因子;然而,LG细胞不能连续培养4。使用二维(2D)培养,由You等人5和阿克曼等人分离出小鼠LG衍生的干细胞6、发现表达干细胞/祖细胞标记基因的Oct4Sox2纳米和巢蛋白,并可进行传代培养。然而,没有明确的迹象表明这些细胞可以分化成腺泡或导管细胞,也没有移植实验来验证体内的分化潜力。

最近,通过流式细胞术从小鼠LG中分离出c-kit+ dim/EpCAM+/Sca1-/CD34/CD45 细胞,发现其表达LG祖细胞标志物,如Pax6和Runx1, 并在体外分化成导管和阿西尼。在具有ADDD的小鼠中,用这些细胞进行原位注射可以修复受损的LG并恢复LG2的分泌功能。然而,通过这种方法分离的干细胞数量很少,并且没有合适的培养条件来扩增分离的LGSC。综上所述,需要建立适当的培养体系,以有效分离和培养具有稳定和持续扩增的LGS成体LGSC,以研究LGSC在ADD处理中的应用。

来自干细胞或多能干细胞的类器官是一组在组织学上与相关器官相似的细胞,可以维持自己的更新。在Sato等人于2009年7成功培养小鼠肠道类器官后,基于佐藤的培养系统,连续培养来自其他器官的类器官,如胆囊8,肝脏9,胰腺10,胃11,乳房12,肺13,前列腺14和唾液腺15.由于成体干细胞在类器官培养中分化前的比例很高,因此三维(3D)类器官培养方法被认为是LG成体干细胞分离和培养的最佳选择。

本研究通过优化3D无血清培养方法建立了成年小鼠LGSC培养系统。结果表明,从正常和ADD小鼠培养的LGSC显示出稳定的自我更新和增殖能力。移植到添加的小鼠LG后,LGSC定植受损的LG并改善了泪液的产生。此外,从ROSA26mT / mG 小鼠中分离红色荧光LGSC并进行培养。本研究为LGSC 体外 富集和LGSC自体移植在临床应用中的附加治疗提供了可靠的参考。

Protocol

该协议中的所有实验都遵循中山大学动物试验伦理委员会的动物护理指南。所有与细胞相关的操作都将在单元操作室的超洁净工作台上进行。所有使用二甲苯的操作都将在通风橱中进行。 1. 初级培养 低压合成材料隔离 获取6-8周龄的BALB / c雄性小鼠,并切开耳朵后面的皮肤以暴露LG及其周围的结缔组织。在镊子的帮助下通过钝性解剖剥离结缔组织并去…

Representative Results

建立 3D、无血清培养系统本研究开发了含有EGF、Wnt3A、FGF10和Y-27632的小鼠LGSC,并通过3D培养方法成功分离和培养LGSC(图1A)。使用该方法已经建立了来自C57BL / 6小鼠,NOD / ShiLtJ小鼠,BALB / c小鼠和ROSA26mT / mG小鼠的LGSC的成功3D,无血清培养系统16。对于雄性小鼠,通过解离从两个LG获得1.5-2×10 6个细胞。培养一周后,在培养开始?…

Discussion

有完善的泪液干细胞分离和 体外 培养方法,用于泪液干细胞培养和LG损伤修复。沙托斯等人17 和阿克曼等人。6 .分别通过2D培养方法成功培养和传代大鼠和小鼠的泪液干细胞,使得可以移植泪液干细胞用于ADDD的治疗。对2D培养的LGs的干细胞18 和间充质干细胞1920 的研究表明,移植这些…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金项目(第31871413号)和广东省科学技术两个计划(2017B020230002和2016B030231001)资助。我们非常感谢在研究期间帮助我们的研究人员以及在动物中心工作的工作人员在动物护理方面的支持。

Materials

Animal(Mouse)
Bal B/C Model Animal Research Center of Nanjing University
C57 BL/6J Laboratory Animal Center of Sun Yat-sen University
NOD/ShiLtJ Model Animal Research Center of Nanjing University
ROSA26mT/mG Model Animal Research Center of Nanjing University
Equipment
Analytical balance Sartorius
Automatic dehydrator Thermo
Blood counting chamber BLAU
Cell Counter CountStar
CO2 constant temperature incubator Thermo
ECL Gel imaging system GE healthcare
Electric bath for water bath Yiheng Technology
Electrophoresis apparatus BioRad
Fluorescence quantitative PCR instrument Roche
Frozen tissue slicer Lecia
Horizontal centrifuge CENCE
Inverted fluorescence microscope Nikon
Inverted microscope Olympus
Laser lamellar scanning micrograph Carl Zeiss
Liquid nitrogen container Thermo
Low temperature high speed centrifuge Eppendorf
Micropipettor Gilson
Microwave oven Panasonic
Nanodrop ultraviolet spectrophotometer Thermo measure RNA concentration
Paraffin slicing machine Thermo
PCR Amplifier Eppendorf
pH value tester Sartorius
4 °C Refrigerator Haier
Thermostatic culture oscillator ZHICHENG
Tissue paraffin embedding instrument Thermo
 -80°C Ultra-low temperature refrigerator Thermo
 -20°C Ultra-low temperature refrigerator Thermo
Ultra pure water purification system ELGA
Reagent
Animal Experiment
HCG Sigma 9002-61-3
PMSG Sigma 14158-65-7
Pentobarbital Sodium Sigma 57-33-0
Cell Culture
B27 Gibco 17504044
Collagenase I Gibco 17018029
Dispase BD 354235
DMEM Sigma D6429
DMEM/F12 Sigma D0697
DMSO Sigma 67-68-5
EDTA Sangon Biotech A500895
Foetal Bovine Serum Gibco 04-001-1ACS
GlutaMax Gibco 35050087
Human FGF10 PeproTech 100-26
Matrigel (Matrix gel) BD 356231
Murine Noggin PeproTech 250-38
Murine Wnt3A PeproTech 315-20
Murine EGF PeproTech 315-09
NEAA Gibco 11140050
N2 Gibco 17502048
R-spondin 1 PeproTech 120-38
Trypsin Inhibitor (TI) Sigma T6522 Derived from Glycine max; can inhibit trypsin, chymotrypsin, and plasminase to a lesser extent. One mg will inhibit 1.0-3.0 mg of trypsin.
Trypsin Sigma  T4799
Y-27632 Selleck S1049
HE staining & Immunostaining
Alexa Fluor 488 donkey anti-Mouse IgG Thermo A-21202 Used dilution: IHC) 2 μg/mL, (IF) 0.2 μg/mL
Alexa Fluor 488 donkey anti-Rabbit IgG Thermo A-21206 Used dilution: (IHC) 2 μg/mL, (IF) 2 μg/mL
Alexa Fluor 568 donkey anti-Mouse IgG Thermo A-10037 Used dilution: (IHC) 2 μg/mL, (IF) 2 μg/mL
Alexa Fluor 568 donkey anti-Rabbit IgG Thermo A-10042 Used dilution: (IHC) 2 μg/mL, (IF) 4 μg/mL
Anti-AQP5 rabbit antibody Abcam ab104751 Used dilution: (IHC) 1 μg/mL, (IF) 0.1 μg/mL
Anti-E-cadherin Rat antibody Abcam ab11512 Used dilution: (IF)  5 μg/mL
Anti-Keratin14 rabbit antibody Abcam ab181595 Used dilution: (IHC) 1 μg/mL, (IF) 2 μg/mL
Anti-Ki67 rabbit antibody Abcam ab15580 Used dilution: (IHC) 1 μg/mL, (IF) 1 μg/mL
Anti-mCherry mouse antibody Abcam ab125096 Used dilution: (IHC) 2 μg/mL, (IF) 2 μg/mL
Anti-mCherry rabbit antibody Abcam ab167453 Used dilution: (IF)  2 μg/mL
C6H8O7 Sangon Biotech A501702-0500
Citric Acid Sangon Biotech 201-069-1
DAB Kit (20x) CWBIO CW0125
DAPI Thermo 62248
Eosin BASO 68115
Fluorescent Mounting Medium Dako S3023
Formalin Sangon Biotech A501912-0500
Goat anti-Mouse IgG antibody (HRP) Abcam ab6789 Used dilution: 2 μg/mL
Goat anti-Rabbit IgG antibody(HRP) Abcam ab6721 Used dilution: 2 μg/mL
Hematoxylin BASO 517-28-2
Histogel (Embedding hydrogel) Thermo HG-400-012
30% H2O2 Guangzhou Chemistry KD10
30% Hydrogen Peroxide Solution Guangzhou Chemistry 7722-84-1
Methanol Guangzhou Chemistry 67-56-1
Na3C6H5O7.2H2O Sangon Biotech A501293-0500
Neutral balsam SHANGHAI YIYANG YY-Neutral balsam
Non-immunized Goat Serum BOSTER AR0009
Paraffin Sangon Biotech A601891-0500
Paraformaldehyde DAMAO 200-001-8
Saccharose Guangzhou Chemistry 57-50-1
Sodium citrate tribasic dihydrate Sangon Biotech 200-675-3
Sucrose Guangzhou Chemistry IB11-AR-500G
Tissue-Tek O.T.C. Compound SAKURA SAKURA.4583
Triton X-100 DINGGUO 9002-93-1
Xylene Guangzhou Chemistry 128686-03-3
RT-PCR & qRT-PCR
Agarose Sigma 9012-36-6
Alcohol Guangzhou Chemistry 64-17-5
Chloroform Guangzhou Chemistry 865-49-6
Ethidium Bromide Sangon Biotech 214-984-6
Isopropyl Alcohol Guangzhou Chemistry 67-63-0
LightCycler 480 SYBR Green I Master Mix Roche 488735200H
ReverTra Ace qPCR RT Master Mix TOYOBO
Taq DNA Polymerase TAKARA R10T1
Goldview (nucleic acid stain) BioSharp BS357A
TRIzol Magen R4801-02
Vector Construction & Cell Transfection
Agar OXID
Ampicillin Sigma 69-52-3
Chloramphenicol Sigma 56-75-7
Endotoxin-free Plasmid Extraction Kit Thermo A36227
Kanamycin Sigma 25389-94-0
Lipo3000 Plasmid Transfection Kit Thermo L3000015
LR Reaction Kit Thermo 11791019
Plasmid Extraction Kit TIANGEN DP103
Trans5α Chemically Competent Cell TRANSGEN CD201-01
Trytone OXID
Yeast Extract OXID
Primers and Sequence Company
Primer: AQP5
Sequence:
F: CATGAACCCAGCCCGATCTT
R: CTTCTGCTCCCATCCCATCC
Synbio Tech
Primer: β-actin
Sequence:
F: AGATCAAGATCATTGCTCCTCCT
R: AGATCAAGATCATTGCTCCTCCT
Synbio Tech
Primer: Epcam
Sequence:
F: CATTTGCTCCAAACTGGCGT
R: TGTCCTTGTCGGTTCTTCGG
Synbio Tech
Primer: Krt5
Sequence:
F: AGCAATGGCGTTCTGGAGG
R: GCTGAAGGTCAGGTAGAGCC
Synbio Tech
Primer: Krt14
Sequence:
F: CGGACCAAGTTTGAGACGGA
R: GCCACCTCCTCGTGGTTC
Synbio Tech
Primer: Krt19
Sequence:
F: TCTTTGAAAAACACTGAACCCTG
R: TGGCTCCTCAGGGCAGTAAT
Synbio Tech
Primer: Ltf
Sequence:
F: CACATGCTGTCGTATCCCGA
R: CGATGCCCTGATGGACGA
Synbio Tech
Primer: Nestin
Sequence:
F: GGGGCTACAGGAGTGGAAAC
R: GACCTCTAGGGTTCCCGTCT
Synbio Tech
Primer: P63
Sequence:
F: TCCTATCACGGGAAGGCAGA
R: GTACCATCGCCGTTCTTTGC
Synbio Tech
Vector
pLX302 lentivirus no-load vector Addgene
pENRTY-mCherry Xiaofeng Qin laboratory, Sun Yat-sen University

Riferimenti

  1. Zoukhri, D., Macari, E., Kublin, C. L. A single injection of interleukin-1 induces reversible aqueous tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Experimental Eye Research. 84 (5), 894-904 (2007).
  2. Gromova, A., et al. Lacrimal gland repair using progenitor cells. Stem Cells Translational Medicine. 6 (1), 88-98 (2016).
  3. Buzhor, E., et al. Cell-based therapy approaches: the hope for incurable diseases. Regenerative Medicine. 9 (5), 649-672 (2014).
  4. Tiwari, S., et al. Establishing human lacrimal gland cultures with secretory function. PLoS One. 7 (1), 29458 (2012).
  5. You, S., Kublin, C. L., Avidan, O., Miyasaki, D., Zoukhri, D. Isolation and propagation of mesenchymal stem cells from the lacrimal gland. Investigative Ophthalmology & Visual Science. 52 (5), 2087-2094 (2011).
  6. Ackermann, P., et al. Isolation and investigation of presumptive murine lacrimal gland stem cells. Investigative Ophthalmology & Visual Science. 56 (8), 4350-4363 (2015).
  7. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  8. Lugli, N., et al. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Reports. 17 (5), 769-779 (2016).
  9. Huch, M., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160 (1), 299-312 (2015).
  10. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1), 324-338 (2015).
  11. Barker, N., et al. Lgr5+(ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6 (1), 25-36 (2010).
  12. Linnemann, J. R., et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development. 142 (18), 3239-3251 (2015).
  13. Rock, J. R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 106 (31), 12771-12775 (2009).
  14. Chua, C. W., et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology. 16 (1), 951-961 (2014).
  15. Maimets, M., et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Reports. 6 (1), 150-162 (2016).
  16. Xiao, S., Zhang, Y. Establishment of long-term serum-free culture for lacrimal gland stem cells aiming at lacrimal gland repair. Stem Cell Research & Therapy. 11 (1), 20 (2020).
  17. Shatos, M. A., Haugaard-Kedstrom, L., Hodges, R. R., Dartt, D. A. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Investigative Ophthalmology & Visual Science. 53 (6), 2749-2759 (2012).
  18. Mishima, K., et al. Transplantation of side population cells restores the function of damaged exocrine glands through clusterin. Stem Cells. 30 (9), 1925-1937 (2012).
  19. Aluri, H. S., et al. Delivery of bone marrow-derived mesenchymal stem cells improves tear production in a mouse model of sjögren’s syndrome. Stem Cells International. 2017, 1-10 (2017).
  20. Dietrich, J., Schrader, S. Towards lacrimal gland regeneration: current concepts and experimental approaches. Current Eye Research. 45 (3), 230-240 (2020).
  21. Sato, T., Clevers, H. SnapShot: growing organoids from stem cells. Cell. 161 (7), 1700 (2015).
  22. Kleinman, H. K., Martin, G. R. Matrigel: basement membrane matrix with biological activity. Seminars in Cancer Biology. 15 (5), 378-386 (2005).
  23. Arnaoutova, I., George, J., Kleinman, H. K., Benton, G. Basement membrane matrix (BME) has multiple uses with stem cells. Stem Cell Reviews and Reports. 8 (1), 163-169 (2012).
check_url/it/63585?article_type=t

Play Video

Citazione di questo articolo
Chen, H., Huang, P., Zhang, Y. Three-Dimensional, Serum-Free Culture System for Lacrimal Gland Stem Cells. J. Vis. Exp. (184), e63585, doi:10.3791/63585 (2022).

View Video