Summary

分子和免疫技术在胃肠道间质瘤基因工程小鼠模型中

Published: May 02, 2022
doi:

Summary

本手稿的目的是描述 试剂盒V558Δ/+小鼠模型以及成功解剖和处理小鼠标本的技术。

Abstract

胃肠道间质瘤(GIST)是最常见的人肉瘤,通常由KIT受体中的单个突变驱动。在各种肿瘤类型中,已经开发了许多小鼠模型,以研究下一代癌症疗法。然而,在GIST中,大多数 体内 研究使用具有固有局限性的异种移植小鼠模型。在这里,我们描述了一种免疫功能正常的,基因工程化的胃肠道间质瘤小鼠模型,该模型含有 KitV558Δ / + 突变。在这个模型中,突变的KIT是负责大多数GIST的癌基因,由其内源性启动子驱动,导致GIST模仿人类GIST中的组织学外观和免疫浸润。此外,该模型已成功用于研究靶向分子和免疫疗法。在这里,我们描述了 KitV558Δ/+ 小鼠群落的繁殖和维护。此外,本文详细介绍了 KitV558Δ/+ 小鼠中GIST,引流肠系膜淋巴结和邻近盲肠的治疗和获取,以及用于分子和免疫学分析的样品制备。

Introduction

GIST是人类最常见的肉瘤,在美国发病率约为6,000例1。GIST似乎起源于称为Cajal间质细胞的胃肠道起搏器细胞,通常由酪氨酸激酶KIT或PDGFRA2中的单个突变驱动。手术是 GIST 的主要治疗方法,可以治愈,但晚期疾病患者可以使用酪氨酸激酶抑制剂 (TKI) 伊马替尼进行治疗。自20多年前推出以来,伊马替尼已经改变了GIST的治疗模式,将晚期疾病的生存率从1年提高到5年以上345。不幸的是,由于获得性KIT突变,伊马替尼很少能治愈,因此需要新的治疗方法来治疗这种肿瘤。

小鼠模型是研究癌症新疗法的重要研究工具。GIST67中已经开发并研究了多种皮下异种移植和患者来源的异种移植模型。然而,免疫缺陷小鼠不能完全代表人类GIST,因为GISTs根据其致癌突变具有不同的免疫谱,并且改变胃肠道肿瘤微环境可改善TKI治疗的效果89KitV558Δ/+小鼠在 Kit 外显子 11 中具有杂合子种系缺失,该基因系对并列膜结构域进行编码,这是人类 GIST10 中最常见的突变位点。KitV558Δ/+小鼠发展出具有100%外显率的单个盲肠GIST,并且肿瘤具有与人类GIST811,1213相似的组织学,分子信号传导,免疫浸润和对治疗的反应。在这里,我们描述了KitV558Δ / +小鼠中的育种,处理以及标本分离和处理,用于GIST中的分子和免疫学研究。

Protocol

根据NIH指南和宾夕法尼亚大学IACUC的批准,所有小鼠都住在宾夕法尼亚大学的无病原体条件下。安乐死是按照宾夕法尼亚大学实验动物资源标准操作程序进行的。 1. 试剂盒V558Δ/+ 小鼠育种 使用 C57BL/6J 鼠标将套件 V558Δ/+ 鼠标反向交叉 10 次以上,放到 C57BL/6J 背景上。为此,将雄性 试剂盒V558Δ / +</sup…

Representative Results

KitV558Δ/+小鼠模型允许在免疫功能小鼠模型中研究治疗方法。由于进行性肠梗阻,KitV558Δ / +小鼠的平均寿命为8个月(图4)。来自KitV558Δ / +小鼠的肿瘤表达GIST的规范标志物,包括酪氨酸激酶KIT和跨膜通道DOG1(图5)以及转录因子ETV1(未显示)。可以研究肿?…

Discussion

试剂盒V558Δ/+小鼠模型是GIST分子和免疫学分析的强大研究工具。虽然育种策略需要单次杂交,但在分析肿瘤反应的实验中使用KitV558Δ/+小鼠队列需要广泛的育种。小鼠的年龄和性别应匹配,以确保相似的肿瘤重量,并且10%的小鼠在肿瘤建立时在8周龄之前死亡。如果使用先进的成像技术(如CT或MRI)来跟踪个体小鼠内的肿瘤体积,则可能采用不太广泛的育种策略。尽管?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

KitV558Δ/+ 小鼠经过基因工程改造,由彼得·贝斯梅尔博士10共享。这项工作得到了NIH拨款R01 CA102613和T32 CA251063的支持。

Materials

100 micron filter EMSCO 1194-2360
1x RBC lysis buffer Life Technologies 00-4333-57
3mL syringe Thermo Fisher Scientific/BD Biosciences 14823435
4–15% Mini-PROTEAN TGX Precast Protein Gels, 10-well, 30 µl Bio-Rad 4561083
4% Paraformaldehyde Solution Thermo Fisher Scientific AAJ19943K2
40 micron filter EMSCO 1194-2340
5M NaCl Sigma Aldrich S6546
70 micron filter EMSCO 1194-2350
AKT antibody (C67E7) Cell Signaling 4691
C57BL/6J mice The Jackson Laboratory
Collagenase IV Sigma Aldrich C5138
Complete mini edta free protease inhibitor Thomas Scientific C852A34
Countess II Automated Cell Counter Thermo Fisher Scientific
Disposable Scalpels Thermo Fisher Scientific/Exel International 14-840-00
Dnase I Thomas Scientific C756V81
Dog1 antibody abcam ab64085
EDTA Sigma Aldrich E9884
ERK antibody (p44/42) Cell Signaling 9102
FBS Thomas Scientific C788U23
FIJI software FIJI https://imagej.net/software/fiji
Fisherbrand 850 Homogenizer Thermo Fisher Scientific 15-340-169
HBSS University of Pennsylvania Cell Center
Imatinib mesylate Selleck Chemicals S1026
KIT antibody (D13A2) Cell Signaling 3074
KitV558Δ/+ Genotyping Transnetyx
Microcentrifuge tubes (1.5mL) Thermo Fisher Scientific 05-408-129
Mouse on Mouse Immunodetection Kit, Basic Vector Laboratories BMK-2202
Nitrocellulose Membrane, Precut, 0.45 µm Rio-Rad 1620145
Nonfat Dry Milk Thermo Fisher Scientific NC9121673
Nonidet P 40 Substitute Sigma Aldrich 74385
p-AKT antibody (S473) Cell Signaling 4060
p-ERK antibody (p44/42) Cell Signaling 9101
p-KIT antibody (Y719) Cell Signaling 3391
PMSF Protease Inhibitor Thermo Fisher Scientific 36978
Proeinase K Thermo Fisher Scientific BP170050
Round-Bottom Polystyrene Test (FACS) Tubes Falcon/Thermo Fisher Scientific 14-959-2A
RPMI University of Pennsylvania Cell Center
Sodium fluoride (NaF) Sigma Aldrich 201154
Sodium orthovanadate (Na3VO4) Sigma Aldrich S6508
SuperSignal West Dura Extended Duration Substrate Thermo Fisher Scientific 34076
TBS buffer (10x) University of Pennsylvania Cell Center
Tissue culture dish (100mm2) Thermo Fisher Scientific/Falcon 08-772E
TrisHCL Thermo Fisher Scientific BP1757500
Tween 20 Rio-Rad 1706531
 vivaCT 80 platform Scanco medical

Riferimenti

  1. Mastrangelo, G., et al. Incidence of soft tissue sarcoma and beyond: a population-based prospective study in 3 European regions. Cancer. 118 (21), 5339-5348 (2012).
  2. Joensuu, H., DeMatteo, R. P. The management of gastrointestinal stromal tumors: a model for targeted and multidisciplinary therapy of malignancy. Annual Review of Medicine. 63, 247-258 (2012).
  3. Blanke, C. D., et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. Journal of Clinical Oncology. 26 (4), 620-625 (2008).
  4. Demetri, G. D., et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 381 (9863), 295-302 (2013).
  5. Gold, J. S. Outcome of metastatic GIST in the era before tyrosine kinase inhibitors. Annals of Surgical Oncology. 14 (1), 134-142 (2007).
  6. Huynh, H., et al. Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Molecular Cancer Therapeutics. 8 (1), 152-159 (2009).
  7. Na, Y. S., et al. Establishment of patient-derived xenografts from patients with gastrointestinal stromal tumors: analysis of clinicopathological characteristics related to engraftment success. Scientific Reports. 10 (1), 7996 (2020).
  8. Balachandran, V. P., et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Medicine. 17 (9), 1094-1100 (2011).
  9. Vitiello, G. A., et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. Journal of Clinical Investigation. 129 (5), 1863-1877 (2019).
  10. Sommer, G., et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America. 100 (11), 6706-6711 (2003).
  11. Cavnar, M. J., et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. Journal of Experimental Medicine. 210 (13), 2873-2886 (2013).
  12. Medina, B. D., et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. Journal of Experimental Medicine. 216 (6), 1359-1376 (2019).
  13. Zhang, J. Q., et al. Macrophages and CD8(+) T cells mediate the antitumor efficacy of combined CD40 ligation and imatinib therapy in gastrointestinal stromal tumors. Cancer Immunology Research. 6 (4), 434-447 (2018).
  14. . General Protocol for Western Blotting Available from: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Buttetin_6376.pdf (2022)
  15. Sadeghipour, A., Babaheidarian, P. Making formalin-fixed, paraffin embedded blocks. Biobanking: Methods and Protocols. , 253-268 (2019).
  16. Sy, J., Ang, L. -. C. Microtomy: Cutting formalin-fixed, paraffin-embedded sections. Biobanking: Methods and Protocols. , 269-278 (2019).
  17. Seifert, A. M., et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clinical Cancer Research. 23 (2), 454-465 (2017).
  18. Liu, M., et al. Oncogenic KIT modulates Type I IFN-mediated antitumor immunity in GIST. Cancer Immunology Research. 9 (5), 542-553 (2021).
  19. Rossi, F., et al. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proceedings of the National Academy of Sciences of the United States of America. 103 (34), 12843-12848 (2006).

Play Video

Citazione di questo articolo
Tieniber, A. D., Hanna, A. N., Do, K., Wang, L., Rossi, F., DeMatteo, R. P. Molecular and Immunologic Techniques in a Genetically Engineered Mouse Model of Gastrointestinal Stromal Tumor. J. Vis. Exp. (183), e63853, doi:10.3791/63853 (2022).

View Video