Summary

控制用于3D细胞培养的微孔退火颗粒支架中的颗粒分数

Published: October 28, 2022
doi:

Summary

最大限度地减少颗粒支架内颗粒组分的变异性有助于可重复的实验。这项工作描述了为 体外 组织工程应用生成具有受控颗粒组分的颗粒支架的方法。

Abstract

微凝胶是微孔退火颗粒(MAP)支架的组成部分,可作为 体外 细胞培养和 体内 组织修复的平台。在这些颗粒支架中,微凝胶之间的空隙产生的先天孔隙率使细胞浸润和迁移成为可能。控制空隙分数和颗粒分数对于MAP支架设计至关重要,因为孔隙率是细胞的生物活性线索。球形微凝胶可以在微流体装置上生成,以控制尺寸和形状,然后使用防止聚合物网络破裂的方法冷冻干燥。再水化后,冻干微凝胶导致MAP支架中的受控颗粒组分。这些微凝胶冻干方法的实施导致了可重复的研究,显示了颗粒组分对大分子扩散和细胞扩散的影响。以下协议将涵盖微凝胶的制造、冻干和再水化,用于控制MAP支架中的颗粒部分,以及通过生物正交交联对微凝胶进行退火,用于 体外3D细胞培养。

Introduction

微孔退火颗粒(MAP)支架是颗粒材料的子类,其中微凝胶(μgel)构建块相互连接以形成块状多孔支架。凭借这些颗粒支架的独特微结构,由相互连接的球形微凝胶之间的空隙产生的先天孔隙率支持加速细胞浸润和迁移1。MAP支架的微凝胶构建块可以由合成和天然聚合物制成,并具有化学改性2。这里描述的方法特别强调了由透明质酸(HA)骨架组成的微凝胶的使用,该骨架改性了功能性降冰片烯(NB)手柄。HA聚合物上的NB功能手柄支持点击化学反应,用于形成微凝胶并将它们连接在一起以生成MAP支架34。已经采用了许多方案将微凝胶连接在一起(即退火),例如酶1,光基56和无添加剂点击化学37反应。这项工作描述了无添加剂点击化学,使用四嗪-降冰片烯逆电子需求Diels-Alder偶联来互连HA-NB微凝胶。

为了制造MAP支架,用户首先在批处理系统或微流体装置中使用反向乳液以及电流体动力喷涂,光刻或机械破碎2生成微凝胶构建块。球形HA-NB微凝胶的生产已经得到了很好的描述,并且以前使用批量乳液2和微流体液滴生成技术891011进行了报道。在这项工作中,在流动聚焦微流体平台上生成球形HA-NB微凝胶,用于控制尺寸和形状,如前所述8910纯化后,微凝胶存在于水悬浮液中,必须浓缩以诱导卡住状态。当被卡住时,微凝胶表现出剪切稀化特性,这使得它们能够作为可注射的空间填充材料1。诱导卡住状态的一种方法是通过冻干或冷冻干燥干燥微凝胶,然后以受控体积12干燥产物进行再水化。或者,可以通过在过滤器上离心或通过抽吸或使用吸收材料从微凝胶沉淀中手动去除缓冲液从微凝胶浆液中除去多余的缓冲液。然而,在制作颗粒支架时,使用离心干燥微凝胶可以产生高度可变的颗粒分数和空隙分数范围12。已经描述了使用70%IPA用于聚乙二醇(PEG)微凝胶13,氟化油用于明胶甲基丙烯酰(GelMa)微凝胶14和70%乙醇用于HA微凝胶12的冻干微凝胶技术。该协议重点介绍了使用70%乙醇(标准实验室试剂)冷冻干燥球形HA微凝胶的方法,以在干燥过程中保持原始微凝胶特性。冻干的HA微凝胶可以按用户定义的重量百分比称重和再水化,以控制MAP支架12中的最终颗粒组分。

MAP支架形成的最后一步依赖于对微凝胶进行退火以创建块状多孔支架1。通过利用天然细胞外基质成分并采用生物正交退火方案,MAP支架可作为体外细胞培养和体内组织修复的生物相容性平台3。通过这些方法,MAP支架可以由HA-NB构建块制成,具有用户定义的颗粒组分,用于组织工程应用12。以下协议描述了HA-NB微凝胶的微流体生产,然后进行冻干和再水化以控制MAP支架中的颗粒部分。最后,使用生物正交化学描述了用于体外3D细胞培养实验的微凝胶退火步骤。

Protocol

1. 微流控器件制造 软光刻注意:该协议描述了de Wilson等人9的流聚焦微流体设备设计的器件制造。但是,该协议可用于SU-8晶圆上的任何器件设计。晶片可以粘在培养皿上,然后需要硅烷化以防止PDMS粘附在晶片特征15上。将聚二甲基硅氧烷(PDMS)弹性体基料与固化剂(见 材料表)以10:1的比例混合。准备大约 100 g 以用 ~…

Representative Results

该协议的目的是演示使用生物正交交联方案以及用于3D细胞培养的受控颗粒组分制备微孔退火颗粒(MAP)支架。首先,用降冰片烯侧基修饰HA,用于微凝胶形成和互连以形成MAP支架。使用这些方法,大约31%的HA重复单元用降冰片烯功能手柄成功修饰(图1A)。具有流动聚焦区域的微流体装置(图1B)显示可产生直径~50μm或~100μm的HA-NB微凝胶(图1C,D<…

Discussion

HA-NB微凝胶的微流控生产已被证明可以产生比乳液批量生产39具有更窄的粒径分布范围的微凝胶。本协议中描述的微凝胶使用MMP可裂解交联剂(Ac-GCRDGPQGIWGQDRCG-NH2)配制以支持材料降解。然而,HA-NB微凝胶也可以使用替代的二硫醇接头进行交联,例如二硫苏糖醇(DTT),它是不可降解的。类似地,其它光引发剂,如Irgacure 2959 2-羟基-4-(2-羟基乙?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢美国国立卫生研究院,美国国立神经系统疾病和中风研究所(1R01NS112940,1R01NS079691,R01NS094599)和国家过敏和传染病研究所(1R01AI152568)。这项工作部分是在杜克大学共享材料仪器设施(SMIF)进行的,该设施是北卡罗来纳州研究三角纳米技术网络(RTNN)的成员,该网络由美国国家科学基金会(奖励号ECCS-2025064)支持,作为国家纳米技术协调基础设施(NNCI)的一部分。作者要感谢实验室的前博士后Lucas Schirmer博士以及Ethan Nicklow在生成用于细胞培养实验的3D打印设备方面的帮助。

Materials

1 mL Luer-Lok syringe sterile, single use, polycarbonate BD 309628
5 mL Luer-Lok syringe sterile, single use, polycarbonate BD 309646
Alexa Fluor 488 C5 maleimide Invitrogen A10254 For synthesis of fluorescently-labeled tetrazine
Alexa Fluor 647 Phalloidin Invitrogen A22287 For staining cell culture samples
Aluminum foil VWR 89107-726
Biopsy punch with plunger, 1.0 mm Integra Miltex 69031-01
Biopsy punch, 4 mm Integra Miltex 33-34
Blunt needle, 23 G 0.5", Non-Sterile, Capped SAI Infusion Technologies B23-50
Bottle-top vacuum filter, 0.22 μm Corning CLS430521
Calcium chloride VWR 1B1110 For microgel washing buffer
Capillary-piston assemblies for positive-displacement pipettes, 1000 μL max. volume Rainin 17008609
Capillary-piston assemblies for positive-displacement pipettes, 25 μL max. volume Rainin 17008605
Capillary-piston assemblies for positive-displacement pipettes, 250 μL max. volume Rainin 17008608
Countess Cell Counting Chamber Slides Invitrogen C10228
Countess II FL Automated Cell Counter Invitrogen AMQAF1000
Centrifuge tube, 15 mL CELLTREAT 667015B
Centrifuge tube, 50 mL CELLTREAT 229421
Chloroform, ACS grade, Glass Bottle Stellar Scientific CP-C7304 For synthesis of fluorescently-labeled tetrazine
Corona plasma gun, BD-10A High Frequency Generator ETP 11011
CryoTube Vials, Polypropylene, Internal Thread with Screw Cap Nunc 368632
D1 mouse mesenchymal cells ATCC CRL-12424 Example cell line for culture in MAP gels
DAPI Sigma-Aldrich D9542 For staining cell culture samples
Deuterium oxide, 99.9 atom% D Sigma-Aldrich 151882 For NMR spectroscopy
Dialysis tubing, regenerated cellulose membrane, 12-14 kDa molecular weight cut-off Spectra/Por 132703 For purifying HA-NB and HA-Tet
Diethyl ether VWR BDH1121-4LPC For synthesis of fluorescently-labeled tetrazine
Dimethylformamide Sigma-Aldrich 277056 For synthesis of fluorescently-labeled tetrazine
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)  TCI-Chemicals D2919 For modifying HA
Dithiothreitol (DTT) Thermo Scientific R0861 Non-degradable dithiol linker (substitute for MMP-cleavable peptide)
Dulbecco's Modified Eagle's Medium (DMEM), high glucose, w/ 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture Sigma-Aldrich D6429-500ML For D1 cell culture
EMS Paraformaldehyde, Granular VWR 100504-162 For making 4% PFA
Ethanol absolute (200 proof) KOPTEC 89234-850
Fetal bovine serum (FBS) ATCC 30-2020 For D1 cell culture
Heating Plate Kopf Instruments HP-4M
Hemacytometer with coverglass Daigger Scientific EF16034F
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) Sigma-Aldrich H3375
Sodium hyaluronate, 79 kDa average molecular weight, produced in bacteria Streptococcus zooepidemicus, pharmaceutical grade, microbial contamination <100 CFU/g, bacterial endotoxins <0.050 IU/mg Contipro N/A 79 kDa average molecular weight was used for HA-Tet synthesis, but these methods could be adapted for other molecular weights.
IMARIS Essentials software package Oxford Instruments N/A Microscopy image analysis software
Infusion pump, dual syringe Chemyx N/A
Kimwipe Kimberly-Clark 34120
Laboratory stand with support lab clamp Geyer 212100
Liquid nitrogen Airgas NI 180LT22
Lithium Phenyl(2,4,6-trimethylbenzoyl)phosphinate TCI-Chemicals L0290
Lyophilizer Labconco N/A Labconco FreeZone 6 plus has been discontinued, but other lab grade console freeze dryers could be used for this protocol.
Methyltetrazine-PEG4-maleimide Kerafast FCC210 For synthesis of fluorescently-labeled tetrazine
2-(4-Morpholino)ethane Sulfonic Acid (MES) Fisher Scientific BP300-100 For modifying HA
Micro cover glass, 24 x 60 mm No. 1 VWR 48393-106
Microfluidic device SU8 master wafer FlowJem Custom design made either in-house in clean room or outsourced
Mineral oil, heavy Sigma-Aldrich 330760
MMP-cleavable dithiol crosslinker peptide (Ac-GCRDGPQGIWGQDRCG-NH2) GenScript N/A
5-Norbornene-2-methylamine TCI-Chemicals 95-10-3 For HA-NB synthesis
Packing tape Scotch 3M 1426
Parafilm Bemis PM996
PEG(thiol)2 JenKem Technology USA A4001-1 For synthesis of fluorescently-labeled tetrazine
Penicillin-Streptomycin, 10,000 units/mL Thermo Fisher Scientific 15140122 For D1 cell culture
Petri dish, polystyrene, disposable, Dia. x H=150 x 15 mm Corning 351058
Pluronic F-127 Sigma-Aldrich P2443 For washing HMPs
Phosphate buffered saline (PBS) 1x Gibco 10010023
RainX water repellent glass treatment Grainger 465D20 Synthetic hydrophobic treatment solution for microfluidic device treatment
RGD peptide (Ac-RGDSPGERCG-NH2) GenScript N/A
Rubber bands Staples 112417
Sodium chloride Chem-Impex 30070 For dialysis
Span 80 for synthesis Sigma-Aldrich 1338-43-8
Sylgard 184 Silicone Elastomer Electron Microscopy Science 4019862 polydimethylsiloxane (PDMS) elastomer for making microfluidic devices and tissue culture devices
Syringe filter, Whatman Uniflo, 0.2 μm PES, 13 mm diameter Cytvia 09-928-066
Tetraview LCD digital microscope Celestron 44347
Tetrazine-amine HCl salt Chem-Impex 35098 For HA-Tet synthesis
Triethylamine Sigma-Aldrich 471283 For synthesis of fluorescently-labeled tetrazine
Tris(2-carboxyethyl)phosphine (TCEP) Millipore Sigma 51805-45-9
Triton X-100 VWR 97063-864
Trypan blue solution, 0.4% Thermo Fisher Scientific 15250061
Trypsin EDTA (0.25%), Phenol red Fisher Scientific 25-200-056 For lifting adherent cells to seed in MAP gels
Tygon ND-100-80 Non-DEHP Medical Tubing, Needle Gauge=23, Wall Thickness=0.020 in, Internal diameter = 0.020, Outer diameter = 0.060 in Thomas Scientific 1204G82
UV curing system controller, LX500 LED  OmniCure 010-00369R
UV curing head, LED spot UV OmniCure N/A
UV light meter, Traceable VWR 61161-386
Vacuum dessicator Bel-Art 08-594-15C
X-Acto Z Series Precision Utility Knife Elmer's XZ3601W

Riferimenti

  1. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature Materials. 14 (7), 737-744 (2015).
  2. Daly, A. C., Riley, L., Segura, T., Burdick, J. A. Hydrogel microparticles for biomedical applications. Nature Reviews Materials. 5 (1), 20-43 (2020).
  3. Darling, N. J., et al. Click by click Microporous Annealed Particle (MAP) scaffolds. Advanced Healthcare Materials. 9 (10), 1901391 (2020).
  4. Truong, N. F., et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomaterialia. 94, 160-172 (2020).
  5. Pfaff, B. N., et al. Selective and improved photoannealing of Microporous Annealed Particle (MAP) scaffolds. ACS Biomaterials Science & Engineering. 7 (2), 422-427 (2021).
  6. Sideris, E., et al. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomaterials Science & Engineering. 2 (11), 2034-2041 (2016).
  7. Caldwell, A. S., Campbell, G. T., Shekiro, K. M. T., Anseth, K. S. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Advanced Healthcare Materials. 6 (15), 1700254 (2017).
  8. Qazi, T. H., et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials. 34 (12), 2109194 (2022).
  9. Wilson, K. L., et al. Stoichiometric post modification of hydrogel microparticles dictates neural stem cell fate in microporous annealed particle scaffolds. Advanced Materials. 34 (33), 2201921 (2022).
  10. Muir, V. G., Qazi, T. H., Shan, J., Groll, J., Burdick, J. A. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomaterials Science & Engineering. 7 (9), 4269-4281 (2021).
  11. Highley, C. B., Song, K. H., Daly, A. C., Burdick, J. A. Jammed microgel inks for 3D printing applications. Advanced Science. 6 (1), 1801076 (2018).
  12. Anderson, A. R., Nicklow, E., Segura, T. Particle fraction as a bioactive cue in granular scaffolds. Acta Biomaterialia. 150, 111-127 (2022).
  13. Pruett, L., Ellis, R., McDermott, M., Roosa, C., Griffin, D. R. Spatially heterogeneous epidermal growth factor release from microporous annealed particle (MAP) hydrogel for improved wound closure. Journal of Materials Chemistry B. 9 (35), 7132-7139 (2021).
  14. Sheikhi, A., et al. Microengineered emulsion-to-powder technology for the high-fidelity preservation of molecular, colloidal, and bulk properties of hydrogel suspensions. ACS Applied Polymer Materials. 1 (8), 1935-1941 (2019).
  15. Brower, K., White, A. K., Fordyce, P. M. Multi-step variable height photolithography for valved multilayer microfluidic devices. Journal of Visualized Experiments. (119), e55276 (2017).
  16. JoVE. Nuclear Magnetic Resonance (NMR) Spectroscopy. JoVE Science Education Database. Organic Chemistry. JoVE. , (2022).
  17. Roosa, C., et al. Microfluidic synthesis of microgel building blocks for microporous annealed particle scaffold. Journal of Visualized Experiments. (184), e64119 (2022).
  18. Zhang, H., Dicker, K. T., Xu, X., Jia, X., Fox, J. M. Interfacial bioorthogonal crosslinking. ACS Macro Letters. 3 (8), 727-731 (2014).
  19. Welzel, P. B., et al. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Advanced Healthcare Materials. 3 (11), 1849-1853 (2014).
  20. Plieva, F., Huiting, X., Galaev, I. Y., Bergenståhl, B., Mattiasson, B. Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. Journal of Materials Chemistry. 16 (41), 4065-4073 (2006).
  21. Rommel, D., et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Advanced Science. 9 (10), 2103554 (2022).
  22. Kurt, E., Segura, T. Nucleic acid delivery from granular hydrogels. Advanced Healthcare Materials. 11 (3), 2101867 (2021).
  23. Isaac, A., et al. Microporous bio-orthogonally annealed particle hydrogels for tissue engineering and regenerative medicine. ACS Biomaterials Science & Engineering. 5 (12), 6395-6404 (2019).
  24. Truong, N. F., Lesher-Pérez, S. C., Kurt, E., Segura, T. Pathways governing polyethylenimine polyplex transfection in Microporous Annealed Particle scaffolds. Bioconjugate Chemistry. 30 (2), 476-486 (2019).
  25. Koh, J., et al. Enhanced in vivo delivery of stem cells using microporous annealed particle scaffolds. Small. 15 (39), 1903147 (2019).
  26. Li, F., et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia. 77, 48-62 (2018).

Play Video

Citazione di questo articolo
Anderson, A. R., Segura, T. Controlling Particle Fraction in Microporous Annealed Particle Scaffolds for 3D Cell Culture. J. Vis. Exp. (188), e64554, doi:10.3791/64554 (2022).

View Video