Summary

一种在蜱细胞系中用荧光蛋白表达穿梭载体转化立 克次 体属的电穿孔方法

Published: October 11, 2022
doi:

Summary

电穿孔是一种快速、广泛采用的方法,用于将外源性 DNA 引入 立克次体属。该协议为立 克次体属中专性细胞内细菌的转化提供了一种有用的电穿孔方法。

Abstract

立克次体病是由属于 立克次体 属的各种专性细胞内细菌引起的,这些细菌可以通过受感染的节肢动物媒介的叮咬传播给脊椎动物宿主。迄今为止,由于诊断困难,新出现或重新出现的流行性立克次体病仍然是一个公共卫生风险,因为诊断方法有限,没有标准化或普遍可及。由于缺乏对体征和症状的认识而导致的误诊可能导致抗生素治疗延迟和不良的健康结局。全面了解 立克次 体的特征最终将改善临床诊断、评估和治疗,改善疾病的控制和预防。

立克次体基因的功能研究对于理解其在发病机制中的作用至关重要。本文描述了使用穿梭载体pRAM18dSFA电穿孔帕氏立克次氏立 克次 氏菌株泰特地狱的程序,以及用抗生素(大观霉素和链霉素)在蜱细胞培养中选择转化的 帕氏立 克次体菌落的程序。还描述了一种使用共聚焦免疫荧光显微镜定位蜱细胞中转化的 R. parkeri 的方法,这是一种检查载体细胞系转化的有用技术。类似的方法也适用于其他立克次体的转化。

Introduction

立克次体病是由属于立克次体属(立克次体科,立 克次 体目)的各种专性细胞内细菌引起的。 立克次 体属根据系统发育特征12 分为四大类:斑疹热组 (SFG),其中包含导致最严重和致命的蜱传立克次体病的立克次体(例如,立克次氏体,落基山斑疹热的病原体 )、 斑疹伤寒组(TG,例如, 普罗瓦泽基立克次体,流行性斑疹伤寒的病原体), 过渡组(TRG,例如费利立 克次体,跳蚤传播斑疹热的病原体)和祖先组(AG,例如 贝氏立克次体)。

在已知最古老的媒介传播疾病中,立克次体病主要是在病原体通过受感染的节肢动物媒介(包括蜱、跳蚤、虱子和螨虫)叮咬传播病原体后获得34。尽管有效抗生素的发现改善了治疗结果,但新出现和重新出现的流行立克次体病继续挑战传统的预防和控制策略。因此,全面了解立克次体/宿主/媒介相互作用最终将为开发预防和治疗这些古老疾病的新方法奠定坚实的基础。

在自然界中,细菌中的水平基因转移(HGT)通过偶联,转导和转化发生5。体外细菌转化利用这些HGT概念,尽管立克次体的细胞内性质提出了一些挑战。不同种类立克次体中受限的生长条件和对共轭和转导系统知之甚少,阻碍了立克次体678中结合和转导方法的应用与其他专性细胞内细菌属(例如衣原体、柯克斯体、无形体和埃立克体)相比,立克次体属在细胞质内的生长和复制策略方面有所不同,由于其独特的生活方式特征,这对立克体的遗传修饰提出了特定的挑战9。

在尝试对立克次体进行基因改造时,要克服的最初障碍是实现成功的转化。因此,设计一种具有高转化效率的可行方法对于开发立克次体遗传工具具有极其有价值的价值。在这里,我们专注于电穿孔,这是一种被广泛认可的转化方法,已被用于将外源性DNA成功引入几种立克次体,包括普罗瓦泽氏立克次体,伤寒立克次氏体,圆锥立克次氏体,帕氏立克次氏体,蒙坦立克次氏体,贝氏立克次体,孔雀立克次体和布氏克次体10,111213141516.

本文描述了一种电穿孔帕 克利 菌株泰特地狱(加入:GCA_000965145.1)的程序,其穿梭载体pRAM18dSFA源自弱 细胞立克次氏立克次氏 菌株AaR/SC质粒pRAM18,该梭载体被工程化以编码mKATE(一种远红荧光蛋白)和 aadA,赋予壮观霉素和链霉素抗性131520。转化的 R. parkeri 在蜱细胞系的抗生素选择下是可行的,并且稳定地维持。此外,我们表明,通过共聚焦显微镜在活蜱细胞中转化的 R. parkeri 的定位可用于评估载体细胞系中转化率的质量。

Protocol

1. 从蜱细胞培养物中繁殖和纯化帕氏螨 注意:所有细胞培养程序均应在II类生物安全柜中进行。 准备 R. parkeri-受感染的蜱细胞在 34 °C 的 5 mL L15C300 培养基17 中的 25 cm2 细胞培养瓶中培养 ISE6 细胞,并补充有 5% 胎牛血清 (FBS)、5% 色糖磷酸盐肉汤 (TPB) 和 0.1% 脂蛋白浓缩物 (LPC)。注意:ISE6(肩突硬?…

Representative Results

吉姆萨染色后在光学显微镜下ISE6细胞中帕克里R. parkeri的形态如图1所示。在图2中,使用共聚焦显微镜显示了在ISE6细胞中表达红色荧光蛋白的转化R. parkeri。从孵育的第7天到(B)第10天,ISE6细胞(蓝色,对应于细胞核)中转化的R. parkeri(红色)的感染率显着增加。 <p class="jove_content biglegend" fo:keep-together.w…

Discussion

在这里,我们展示了一种使用电穿孔将穿梭质粒pRAM18dSFA上编码的外源性DNA引入立克次体的方法。在此过程中,从宿主细胞中纯化游离立克次体,用立克次体穿梭载体转化,并释放到蜱细胞上进行感染。还描述了一种共聚焦免疫荧光程序,用于检测蜱细胞中表达红色荧光蛋白的 R. parkeri 。类似的方法适用于其他 立克次体 物种,并且通过进一步的修改可能适用于能够维持质粒的其他专?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢Timothy J. Kurtti和Benjamin Cull富有洞察力的讨论和建议。这项研究得到了美国国立卫生研究院(2R01AI049424)对U.G.M.的资助和明尼苏达州农业实验站(MIN-17-078)对U.G.M.的资助。

Materials

0.1 cm gap gene pulser electroporation cuvette Bio-Rad 1652083
2 μm pore size filter  GE Healthcare Life Sciences Whatman 6783-2520
5 mL Luer-lock syringe  BD 309646
60-90 silicon carbide grit  LORTONE, inc  591-056
absolute methanol  Fisher Scientific A457-4
Bacto tryptose phosphate broth  BD 260300
Cytospin centrifuge Cytospin4 Thermo Fisher Scientific A78300003 The rotor is detatchable so the whole rotor can be put into the hood to load infectious samples
EndoFree Plasmid Maxi Kit (10) QIAGEN 12362 used to obtain endotoxin-free pRAM18dSFA plasmid
extended fine tip transfer pipet  Perfector Scientific TP03-5301
fetal bovine serum  Gemini Bio 900-108 The FBS batch has to be tested to make sure ISE6 cells will grow well in it.
Gene Pulser II electroporator with Pulse Controller PLUS Bio-Rad 165-2105 & 165-2110
hemocytometer Thermo Fisher Scientific 267110
HEPES Millipore-Sigma H4034
ImageJ Fiji National Institute of Health raw image editing
KaryoMAX Giemsa stain  Gibco  2021-10-30
Leibovitz's L-15 medium Gibco 41300039
lipoprotein concentrate  MP Biomedicals 191476
Nikon Diaphot Nikon epifluorescence microscope
NucBlue Live ReadyProbes Reagent  Thermo Fisher Scientific R37605
Olympus Disc Scanning Unit (DSU) confocal microscope  Olympus
Petroff-Hausser Counting Chamber Hausser Scientific  Chamber 3900
sodium bicarbonate Millipore-Sigma S5761
Vortex Fisher Vortex Genie 2 12-812

Riferimenti

  1. Gillespie, J. J., et al. Plasmids and rickettsial evolution: Insight from Rickettsia felis. PLoS One. 2 (3), 266 (2007).
  2. Murray, G. G., Weinert, L. A., Rhule, E. L., Welch, J. J. The phylogeny of Rickettsia using different evolutionary signatures: How tree-like is bacterial evolution. Systematic Biology. 65 (2), 265-279 (2016).
  3. Parola, P., Paddock, C. D., Raoult, D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clinical Microbiology Reviews. 18 (4), 719-756 (2005).
  4. Fang, R., Blanton, L. S., Walker, D. H. Rickettsiae as emerging infectious agents. Clinics in Laboratory Medicine. 37 (2), 383-400 (2017).
  5. Von Wintersdorff, C. J., et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology. 7, 173 (2016).
  6. Winkler, H. H. Rickettsia species (as organisms). Annual Review of Microbiology. 44 (1), 131-153 (1990).
  7. Wood, D. O., Azad, A. F. Genetic manipulation of rickettsiae: A preview. Infection and Immunity. 68 (11), 6091-6093 (2000).
  8. Perlman, S. J., Hunter, M. S., Zchori-Fein, E. The emerging diversity of Rickettsia. Proceedings of the Royal Society B: Biological Sciences. 273 (1598), 2097-2106 (2006).
  9. McClure, E. E., et al. Engineering of obligate intracellular bacteria: Progress, challenges and paradigms. Nature Reviews Microbiology. 15 (9), 544-558 (2017).
  10. Rachek, L. I., Tucker, A. M., Winkler, H. H., Wood, D. O. Transformation of Rickettsia prowazekii to rifampin resistance. Journal of Bacteriology. 180 (8), 2118-2124 (1998).
  11. Troyer, J. M., Radulovic, S., Azad, A. F. Green fluorescent protein as a marker in Rickettsia typhi transformation. Infection and Immunity. 67 (7), 3308-3311 (1996).
  12. Kim, H. K., Premaratna, R., Missiakas, D. M., Schneewind, O. Rickettsia conorii O antigen is the target of bactericidal Weil-Felix antibodies. Proceedings of the National Academy of Sciences of the United States of America. 116 (39), 19659-19664 (2019).
  13. Burkhardt, N. Y., et al. Development of shuttle vectors for transformation of diverse Rickettsia species. PLoS One. 6 (12), 29511 (2011).
  14. Welch, M. D., Reed, S. C., Lamason, R. L., Serio, A. W. Expression of an epitope-tagged virulence protein in Rickettsia parkeri using transposon insertion. PloS One. 7 (5), 37310 (2012).
  15. Oliver, J. D., Burkhardt, N. Y., Felsheim, R. F., Kurtti, T. J., Munderloh, U. G. Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Applied and Environmental Microbiology. 80 (3), 1170-1176 (2014).
  16. Kurtti, T. J., Burkhardt, N. Y., Heu, C. C., Munderloh, U. G. Fluorescent protein expressing Rickettsia buchneri and Rickettsia peacockii for tracking symbiont-tick cell interactions. Veterinary Sciences. 3 (4), 34 (2016).
  17. Oliver, J. D., Chávez, A. S., Felsheim, R. F., Kurtti, T. J., Munderloh, U. G. An Ixodes scapularis cell line with a predominantly neuron-like phenotype. Experimental and Applied Acarology. 66 (3), 427-442 (2015).
  18. Grabowski, J. M., Gulia-Nuss, M., Kuhn, R. J., Hill, C. A. RNAi reveals proteins for metabolism and protein processing associated with Langat virus infection in Ixodes scapularis (black-legged tick) ISE6 cells. Parasites & Vectors. 10 (1), 1-4 (2017).
  19. Al-Rofaai, A., Bell-Sakyi, L. Tick cell Lines in research on tick control. Frontiers in Physiology. 11, 152 (2020).
  20. Wang, X. R., et al. Mitochondrion-dependent apoptosis is essential for Rickettsia parkeri infection and replication in vector cells. mSystems. 6 (2), 01209-01220 (2021).
  21. Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U., Egli, T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Applied and Environmental Microbiology. 73 (10), 3283-3290 (2007).
  22. Riley, S. P., Macaluso, K. R., Martinez, J. J. Electrotransformation and clonal isolation of Rickettsia species. Current Protocols in Microbiology. 39, 1-20 (2015).
  23. Burkhardt, N. Y., et al. Examination of rickettsial host range for shuttle vectors based on dnaA and parA genes from the pRM plasmid of Rickettsia monacensis. Applied and Environmental Microbiology. 88 (7), 00210-00222 (2022).
  24. Kurtti, T. J., et al. Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. International Journal of Systematic and Evolutionary Microbiology. 65, 965 (2015).
  25. Munderloh, U. G., Kurtti, T. J. Formulation of medium for tick cell culture. Experimental & Applied Acarology. 7 (3), 219-229 (1989).
  26. Bell-Sakyi, L. Continuous cell lines from the tick Hyalomma anatolicum anatolicum. The Journal of Parasitology. 77 (6), 1006-1008 (1991).
  27. Mattila, J. T., Burkhardt, N. Y., Hutcheson, H. J., Munderloh, U. G., Kurtti, T. J. Isolation of cell lines and a rickettsial endosymbiont from the soft tick Carios capensis (Acari: Argasidae: Ornithodorinae). Journal of Medical Entomology. 44 (6), 1091-1101 (2007).
  28. Bell-Sakyi, L., Růžek, D., Gould, E. A. Cell lines from the soft tick Ornithodoros moubata. Experimental and Applied Acarology. 49 (3), 209-219 (2009).

Play Video

Citazione di questo articolo
Wang, X., Burkhardt, N. Y., Price, L. D., Munderloh, U. G. An Electroporation Method to Transform Rickettsia spp. with a Fluorescent Protein-Expressing Shuttle Vector in Tick Cell Lines. J. Vis. Exp. (188), e64562, doi:10.3791/64562 (2022).

View Video