Summary

Dissektion af stria vascurose hos voksne mus til enkeltkernesekventering eller immunfarvning

Published: April 21, 2023
doi:

Summary

Stria vascularis er afgørende for dannelsen af endochoclear potentiale. Her præsenterer vi dissektionen af den voksne mus stria vascularis til enkeltkernesekventering eller immunfarvning.

Abstract

Endochollear potentiale, som genereres af stria vascularis, er afgørende for at opretholde et miljø, der fremmer passende hårcellemekanotransduktion og i sidste ende hørelse. Patologier i stria vascularis kan resultere i nedsat hørelse. Dissektion af den voksne stria vascularis muliggør fokuseret enkeltkerneindfangning og efterfølgende enkeltkernesekventering og immunfarvning. Disse teknikker bruges til at studere stria vascularis patofysiologi på enkeltcelleniveau.

Enkeltkernesekventering kan anvendes til indstilling af transkriptionel analyse af stria vascularis. I mellemtiden er immunfarvning fortsat nyttig til identifikation af specifikke populationer af celler. Begge metoder kræver korrekt stria vaskularis dissektion som en forudsætning, hvilket kan vise sig at være teknisk udfordrende.

Introduction

Cochlea består af tre væskefyldte kamre, scala vestibuli, scala media og scala tympani. Scala vestibuli og scala tympani indeholder hver perilymph, som har en høj koncentration af natrium (138 mM) og en lav koncentration af kalium (6,8 mM)1. Scala-mediet indeholder endolymph, som har en høj koncentration af kalium (154 mM) og en lav koncentration af natrium (0,91 mM)1,2,3. Denne forskel i ionkoncentration kan betegnes som det endokkleære potentiale (EP) og genereres primært ved bevægelse af kaliumioner gennem forskellige ionkanaler og mellemrumskryds i stria vascularis (SV) langs sidevæggen af cochlea 4,5,6,7,8,9,10,11 . SV er et heterogent, stærkt vaskulariseret væv, der linjer det mediale aspekt af cochleas laterale væg og indeholder tre hovedcelletyper: marginale, mellemliggende og basale celler12 (figur 1).

Marginale celler er forbundet med tætte kryds for at danne SV’s mest mediale overflade. Den apikale membran vender mod scalamediets endolymfe og bidrager til kaliumiontransport ind i endolymfen ved hjælp af forskellige kanaler, herunder KCNE1 / KCNQ1, SLC12A2 og Na +K + -ATPase (NKA) 5,10,13,14. Mellemceller er pigmenterede celler, der befinder sig mellem marginale og basale celler og letter kaliumtransport gennem SV ved hjælp af KCNJ10 (Kir 4.1)15,16. Basalceller ligger tæt på cochleas laterale væg og er tæt forbundet med fibrocytter i spiralbåndet for at fremme kaliumgenanvendelse fra perilymph12. SV’s patologi har været impliceret i talrige otologiske lidelser17,18. Mutationer i gener udtrykt i de vigtigste SV-celletyper, såsom Kcnq1, Kcne1, Kcnj10 og Cldn11, kan forårsage døvhed og SV-dysfunktion, herunder tab af EP 19,20,21,22,23. Ud over de tre hovedcelletyper er der andre mindre undersøgte celletyper i SV, såsom spindelceller 22, rodceller12,24, makrofager 25, pericytter 26 og endotelceller 27, der har ufuldstændigt definerede roller, der involverer ionisk homeostase og generering af EP 28.

I sammenligning med bulk RNA-sekventering giver enkeltkerner RNA-sekventering (sNuc-Seq) information om celleheterogenitet snarere end et gennemsnit af mRNA på tværs af en gruppe celler29 og kan være særlig nyttig, når man studerer den heterogene SV30. For eksempel har sNuc-Seq produceret transkriptionsanalyse, der tyder på, at der kan være en rolle for spindel- og rodceller i EP-generation, høretab og Menières sygdom18. Yderligere transkriptionel karakterisering af de forskellige SV-celletyper kan give os uvurderlig information om patofysiologien bag forskellige mekanismer og undertyper af SV-relaterede høreudsving og høretab. Høsten af disse sarte indre ørestrukturer er af afgørende betydning for optimal vævsanalyse.

I dette studie beskrives mikrodissektionsmetoden til at få adgang til og isolere stria vascularis fra den voksne musecochlea til sNuc-Seq eller immunfarvning. Dissektion af den voksne mus SV er nødvendig for at forstå forskellige SV-celletyper og yderligere karakterisere deres rolle i hørelsen.

Protocol

Alle dyreforsøg og procedurer blev udført i henhold til protokoller godkendt af Animal Care and Use Committee of National Institute of Neurological Diseases and Stroke og National Institute on Deafness and Other Communication Disorders, National Institutes of Health. Alle eksperimentelle protokoller blev godkendt af Animal Care and Use Committee of National Institute of Neurological Diseases and Stroke og National Institute on Deafness and Other Communication Disorders, National Institutes of Health. Alle metoder blev …

Representative Results

Vi præsenterer en metode til at isolere SV, der skal bruges til enten sNuc-Seq eller immunfarvning. Den relevante anatomi (figur 1) af cochlea i forhold til SV kan hjælpe brugerne med bedre at forstå organisationen af SV og trin i dissektionsprotokollen. Hvert trin i denne mikrodissektion af SV fra en P30-mus er detaljeret i den tilhørende video, og snapshots af de vigtigste trin i denne dissektion og isolering af SV er vist i figur 2</str…

Discussion

Før fremkomsten af enkeltcellesekventering brugte mange forskere bulkvævsanalyse, hvilket kun gjorde det muligt at analysere transkriptomer i gennemsnit på tværs af celler. Især gjorde enkeltcelle og sNuc-Seq det muligt at isolere transkriptomet af henholdsvis en enkelt celle eller en enkelt kerne32. I dette tilfælde kan enkeltkernetranskriptomer identificeres for marginale, mellemliggende og basale celler samt spindelceller30. Dette muliggør undersøgelse af transkr…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Denne forskning blev delvist støttet af NIH’s intramurale forskningsprogram, NIDCD til M.H. (DC000088)

Materials

10-µm filter (Polyethylenterephthalat) PluriSelect #43-50010-01 Filter tissue during sNuc-Seq
18 x 18 mm cover glass Fisher Scientific 12-541A Cover slip to mount SV
30-µm filter (Polyethylenterephthalat) PluriSelect #43-50030-03 Filter tissue during sNuc-Seq
75 x 25 mm Superfrost Plus/Colorforst Plus Microslide Daigger EF15978Z Microslide to mount SV on
C57BL/6J Mice The Jackson Laboratory RRID: IMSR_JAX:000664 General purpose mouse strain that has pigment more easily seen in the intermediate cells of the SV.
Cell Counter Logos Biosystems L20001 Used for cell counting
Chalizon curette 5'', size 3 2.5 mm Biomedical Research Instruments 15-1020 Used to transfer SV
Chromium Next GEM single Cell 3' GEM Kit v3.1 Chromium PN-1000141 Generates single cell 3' gene expression libraries
Clear nail polish Fisher Scientific NC1849418 Used for sealing SV mount
Corning Falcon Standard Tissue Culture Dishes, 24 well Corning 08-772B Culture dish used to hold specimen during dissection
DAPI Invitrogen D1306, RRID: AB_2629482 Stain used for nucleus labeling
Dounce homogenizer Sigma-Aldrich D8938 Used to homogenize tissue for sNuc-seq
Dumont #5 Forceps Fine Science Tools 11252-30 General forceps for dissection
Dumont #55 Forceps Fine Science Tools 11255-20 Forceps with fine tip that makes SV manipulation easier
Fetal Bovine Serum ThermoFisher 16000044 Used for steps of sNuc-Seq
Glue stick Fisher Scientific NC0691392 Used for mounting SV
GS-IB4 Antibody Molecular Probes I21411, RRID: AB-2314662 Antibody used for capillary labeling
KCNJ10-ZsGreen Mice n/a n/a Transgenic mouse that expresses KCNJ10-ZsGreen, partiularly in the intermediate cells of the SV.
MgCl2 ThermoFisher AM9530G Used for steps of sNuc-Seq
Mounting reagent ThermoFisher #S36940 Mounting reagent for SV
Multiwell 24 well plate Corning #353047 Plate used for immunostaining
NaCl ThermoFisher AAJ216183 Used for steps of sNuc-Seq
Nonidet P40 Sigma-Aldrich 9-16-45-9 Used for steps of sNuc-Seq
Nuclease free water ThermoFisher 4387936 Used for steps of sNuc-Seq
Orbital shaker Silent Shake SYC-2102A Used for steps of immunostaining
PBS ThermoFisher J61196.AP Used for steps of immunostaining and dissection
RNA Later Invitrogen AM7021 Used for preservation of SV for sNuc-Seq
Scizzors Fine Science Tools 14058-09 Used for splitting mouse skull
Tris-HCl Sigma-Aldrich 15506017 Used for steps of sNuc-Seq
Trypan blue stain Gibco 15250061 Used for cell counting
Tween20 ThermoFisher AAJ20605AP  Used for steps of sNuc-Seq
Zeiss STEMI SV 11 Apo stereomicroscope Zeiss n/a Microscope used for dissections

Riferimenti

  1. Bosher, S. K., Warren, R. L. Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proceedings of the Royal Society of London. Series B. Biological Sciences. 171 (1023), 227-247 (1968).
  2. Patuzzi, R. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hearing Research. 277 (1-2), 4-19 (2011).
  3. Wangemann, P. K+ cycling and the endocochlear potential. Hearing Research. 165 (1-2), 1-9 (2002).
  4. Adachi, N., et al. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear. The Journal of Physiology. 591 (18), 4459-4472 (2013).
  5. Hibino, H., Nin, F., Tsuzuki, C., Kurachi, Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Archiv. 459 (4), 521-533 (2010).
  6. Lang, F., Vallon, V., Knipper, M., Wangemann, P. Functional significance of channels and transporters expressed in the inner ear and kidney. American Journal of Physiology. Cell Physiology. 293 (4), C1187-C1208 (2007).
  7. Liu, W., Schrott-Fischer, A., Glueckert, R., Benav, H., Rask-Andersen, H. The human "cochlear battery"-claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea. Frontiers in Molecular Neuroscience. 10, 239 (2017).
  8. Marcus, D. C., Wu, T., Wangemann, P., Kofuji, P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology. Cell Physiology. 282 (2), C403-C407 (2002).
  9. Spicer, S. S., Schulte, B. A. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hearing Research. 56 (1-2), 53-64 (1991).
  10. Wangemann, P., Liu, J., Marcus, D. C. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research. 84 (1-2), 19-29 (1995).
  11. Yoshida, T., et al. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential. Pflugers Archiv. 468 (9), 1609-1619 (2016).
  12. Johns, J. D., Adadey, S. M., Hoa, M. The role of the stria vascularis in neglected otologic disease. Hearing Research. 428, 108682 (2023).
  13. Kim, J., Ricci, A. J. In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proceedings of the National Academy of Sciences. 119 (9), e2117846119 (2022).
  14. Zdebik, A. A., Wangemann, P., Jentsch, T. J. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology. 24, 307-316 (2009).
  15. Chen, J., Zhao, H. B. The role of an inwardly rectifying K+ channel (Kir4.1) in the inner ear and hearing loss. Neuroscienze. 265, 137-146 (2014).
  16. Steel, K. P., Barkway, C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 107 (3), 453-463 (1989).
  17. Ito, T., Nishio, A., Wangemann, P., Griffith, A. J. Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome. Neuroscienze. 310, 188-197 (2015).
  18. Gu, S., et al. Characterization of rare spindle and root cell transcriptional profiles in the stria vascularis of the adult mouse cochlea. Scientific Reports. 10 (1), 18100 (2020).
  19. Gow, A., et al. Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. The Journal of Neuroscience. 24 (32), 7051-7062 (2004).
  20. Chang, Q., et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Molecular Medicine. 7 (8), 1077-1086 (2015).
  21. Faridi, R., et al. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Human Mutation. 40 (2), 162-176 (2019).
  22. Wangemann, P., et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine. 2, 30 (2004).
  23. Kitajiri, S. -. I., et al. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hearing Research. 187 (1-2), 25-34 (2004).
  24. Jagger, D. J., Nevill, G., Forge, A. The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. Journal of the Association for Research in Otolaryngology. 11 (3), 435-448 (2010).
  25. Ito, T., Kurata, N., Fukunaga, Y. Tissue-resident macrophages in the stria vascularis. Frontiers in Neurology. 13, 818395 (2022).
  26. Zhang, J., et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight. 6 (8), e143285 (2021).
  27. Shi, X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hearing Research. 338, 52-63 (2016).
  28. Gu, S., et al. Identification of potential Meniere’s disease targets in the adult stria vascularis. Frontiers in Neurology. 12, 630561 (2021).
  29. Fischer, J., Ayers, T. Single nucleus RNA-sequencing: how it’s done, applications and limitations. Emerging Topics in Life Sciences. 5 (5), 687-690 (2021).
  30. Korrapati, S., et al. Single cell and single nucleus RNA-Seq reveal cellular heterogeneity and homeostatic regulatory networks in adult mouse stria vascularis. Frontiers in Molecular Neuroscience. 12, 316 (2019).
  31. Pyle, M. P., Hoa, M. Applications of single-cell sequencing for the field of otolaryngology: A contemporary review. Laryngoscope Investigative Otolaryngology. 5 (3), 404-431 (2020).
  32. Hwang, B., Lee, J. H., Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine. 50 (8), 1-14 (2018).
  33. Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Frontiers in Cell and Developmental Biology. 7, 175 (2019).
  34. Chen, G., Ning, B., Shi, T. Single-cell RNA-Seq technologies and related computational data analysis. Frontiers in Genetics. 10, 317 (2019).
  35. Longo, S. K., Guo, M. G., Ji, A. L., Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics. 22 (10), 627-644 (2021).
  36. Kim, N., Kang, H., Jo, A., Yoo, S. A., Lee, H. O. Perspectives on single-nucleus RNA sequencing in different cell types and tissues. Journal of Pathology and Translational Medicine. 57 (1), 52-59 (2023).
  37. Grindberg, R. V., et al. RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences. 110 (49), 19802-19807 (2013).
  38. Montgomery, S. C., Cox, B. C. Whole mount dissection and immunofluorescence of the adult mouse cochlea. Journal of Visuazlied Experiments. (107), e53561 (2016).

Play Video

Citazione di questo articolo
Strepay, D., Olszewski, R., Taukulis, I., Johns, J. D., Gu, S., Hoa, M. Dissection of Adult Mouse Stria Vascularis for Single-Nucleus Sequencing or Immunostaining. J. Vis. Exp. (194), e65254, doi:10.3791/65254 (2023).

View Video