Summary

Visualizing Monocarboxylates and Other Relevant Metabolites in the Ex Vivo Drosophila Larval Brain Using Genetically Encoded Sensors

Published: October 27, 2023
doi:

Summary

Here we present a protocol to visualize the transport of monocarboxylates, glucose, and ATP in glial cells and neurons using genetically encoded Förster resonance energy transfer-based sensors in an ex-vivo Drosophila larval brain preparation.

Abstract

The high energy requirements of brains due to electrical activity are one of their most distinguishing features. These requirements are met by the production of ATP from glucose and its metabolites, such as the monocarboxylates lactate and pyruvate. It is still unclear how this process is regulated or who the key players are, particularly in Drosophila.

Using genetically encoded Förster resonance energy transfer-based sensors, we present a simple method for measuring the transport of monocarboxylates and glucose in glial cells and neurons in an ex-vivo Drosophila larval brain preparation. The protocol describes how to dissect and adhere a larval brain expressing one of the sensors to a glass coverslip.

We present the results of an entire experiment in which lactate transport was measured in larval brains by knocking down previously identified monocarboxylate transporters in glial cells. Furthermore, we demonstrate how to rapidly increase neuronal activity and track metabolite changes in the active brain. The described method, which provides all necessary information, can be used to analyze other Drosophila living tissues.

Introduction

The brain has high energy requirements due to the high cost of restoring ion gradients in neurons caused by neuronal electric signal generation and transmission, as well as synaptic transmission1,2. This high energy demand has long been thought to be met by the continuous oxidation of glucose to produce ATP3. Specific transporters at the blood-brain barrier transfer the glucose in the blood to the brain. Constant glycemic levels ensure that the brain receives a steady supply of glucose4. Interestingly, growing experimental evidence suggests that molecules derived from glucose metabolism, such as lactate and pyruvate, play an important role in the brain cells' energy production5,6. However, there is still some debate about how important these molecules are for energy production and which cells in the brain produce or use them7,8. The lack of appropriate molecular tools with the high temporal and spatial resolution required for this task is a significant issue that has prevented this controversy from being completely resolved.

The development and application of several engineered fluorescent metabolic sensors have resulted in a remarkable increase in our understanding of where and how metabolites are produced and used, as well as how the metabolic fluxes occur during basal and high neuronal activity9. Genetically encoded metabolic sensors based on Förster resonance energy transfer (FRET) microscopy, such as ATeam (ATP), FLII12Pglu700µδ6 (glucose), Laconic (lactate), and Pyronic (pyruvate), have contributed to our understanding of brain energy metabolism10,11,12,13. However, due to the high costs and sophisticated equipment required to conduct experiments on live animals or tissues, results in vertebrate models are still primarily limited to cell cultures (glial cells and neurons).

The emerging use of the Drosophila model to express these sensors has revealed that key metabolic features are conserved across species and their function can be easily addressed with this tool. More importantly, the Drosophila model has shed light on how glucose and lactate/pyruvate are transported and metabolized in the fly brain, the link between monocarboxylate consumption and memory formation, and the remarkable demonstration of how increases in neural activity and metabolic flux overlap14,15,16,17. The method presented here for measuring monocarboxylate, glucose, and ATP levels using genetically encoded FRET sensors expressed in the larval brain allows researchers to learn more about how the brain of Drosophila uses energy, which can be applied to the brains of other animals.

We show that this method is effective for detecting lactate and glucose in glial cells and neurons, and that a monocarboxylate transporter (Chaski) is involved in lactate import into glial cells. We also demonstrate a simple method for studying metabolite changes during increased neuronal activity, which can be easily induced by bath application of a GABAA receptor antagonist. Finally, we show that this methodology can be used to measure monocarboxylate and glucose transport in other metabolically significant tissues, such as fat bodies.

Protocol

1. Fly strain maintenance and larval synchronization To perform these experiments, use fly cultures raised at 25 °C on standard Drosophila food composed of 10% yeast, 8% glucose, 5% wheat flour, 1.1% agar, 0.6% propionic acid, and 1.5% methylparaben. To follow this protocol, use the following lines: w1118 (experimental control background), OK6-GAL4 (driver for motor neurons), repo-GAL4 (driver for all glial cells), CG-GAL4 (driver for fat bodies), U…

Representative Results

For up to 1 h, this procedure allows for easy measurement of intracellular changes in the fluorescence of monocarboxylate and glucose sensors. As shown in Figure 4, Laconic sensors in both glial cells and motor neurons respond to 1 mM lactate at a similar rate at the start of the pulse, but motor neurons reach a higher increase over the baseline during the 5 min pulse, as previously demonstrated17. This lactate concentration was chosen because it is comparable to the …

Discussion

The use of the Drosophila model for the study of brain metabolism is relatively new26, and it has been shown to share more characteristics with mammalian metabolism than expected, which has primarily been studied in vitro in primary neuron cultures or brain slices. Drosophila excels at in vivo experiments thanks to the battery of genetic tools and genetically encoded sensors available that allows researchers to visualize in real time the metabolic changes caused…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank all the members of the Sierralta Lab. This work was supported by FONDECYT-Iniciación 11200477 (to AGG) and FONDECYT Regular 1210586 (to JS). UAS-FLII12Pglu700µδ6 (glucose sensor) was kindly donated by Pierre-Yves Plaçais and Thomas Preat, CNRS-Paris.

Materials

Agarose Sigma A9539
CaCl2 Sigma C3881
CCD Camera ORCA-R2 Hamamatsu
Cell-R Software Olympus
CG-GAL4 Bloomington Drosophila Stock Center 7011 Fat body driver
Dumont # 5 Forceps Fine Science Tools 11252-30
DV2-emission splitting system Photometrics
Glass coverslips (25 mm diameter) Marienfeld 111650 Germany
Glucose Sigma G8270
GraphPad Prism GraphPad Software Version 8,0,2
HEPES Sigma H3375
ImageJ software National Institues of Health Version 1,53t
KCl Sigma P9541
LUMPlanFl 40x/0.8 water immersion objective Olympus
Methylparaben Sigma H5501
MgCl2 Sigma M1028
NaCl Sigma S7653
OK6-GAL4 Bloomington Drosophila Stock Center Motor neuron driver
Picrotoxin Sigma P1675S CAUTION-Fatal if swallowed
Poly-L-lysine Sigma P4707
Propionic Acid Sigma P1386
Repo-GAL4 Bloomington Drosophila Stock Center 7415 Glial cell driver (all)
Sodium Lactate Sigma 71718
Sodium pyruvate Sigma P2256
Spinning Disk fluorescence Microscope BX61WI Olympus
Sucrose Sigma S0389
Trehalose US Biological T8270
UAS-AT1.03NL  Kyoto Drosophila Stock Center 117012 ATP sensor
UAS-Chk RNAi GD1829 Vienna Drosophila Resource Center v37139 Chk RNAi line
UAS-FLII12Pglu700md6  Bloomington Drosophila Stock Center 93452 Glucose sensor
UAS-GCaMP6f  Bloomington Drosophila Stock Center 42747 Calcium sensor
UAS-Laconic Sierralta Lab Lactate sensor
UAS-Pyronic Pierre Yves Placais/Thomas Preat CNRS-Paris
UMPlanFl 20x/0.5 water immersion objective Olympus

Riferimenti

  1. Vergara, R. C., et al. The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior. Frontiers in Computational Neuroscience. 13 (49), 1-18 (2019).
  2. Pulido, C., Ryan, T. A. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. Science Advances. 7 (49), 1-9 (2021).
  3. Benton, D., Parker, P. Y., Donohoe, R. T. The supply of glucose to the brain and cognitive functioning. Journal of Biosocial Science. 28 (4), 463-479 (1996).
  4. Mergenthaler, P., Lindauer, U., Dienel, G. A., Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences. 36 (10), 587-597 (2013).
  5. Boumezbeur, F., et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. The Journal of Neuroscience. 30 (42), 13983-13991 (2010).
  6. Baltan, S. Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health. Metabolic Brain Disease. 30 (1), 25-30 (2015).
  7. Barros, L. F., Weber, B. CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilization in the brain. The Journal of Physiology. 596 (3), 347-350 (2018).
  8. Yellen, G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. The Journal of Cell Biology. 217 (7), 2235-2246 (2018).
  9. Koveal, D., Diaz-Garcia, C. M., Yellen, G. Fluorescent biosensors for neuronal metabolism and the challenges of quantitation. Current Opinion in Neurobiology. 63, 111-121 (2020).
  10. Imamura, H., et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences of the United States of America. 106 (37), 15651-15656 (2009).
  11. Takanaga, H., Chaudhuri, B., Frommer, W. B. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochimica et Biophysica Acta. 1778 (4), 1091-1099 (2008).
  12. San Martin, A., et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PloS One. 8 (2), 1-13 (2013).
  13. San Martin, A., et al. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PloS One. 9 (1), 1-9 (2014).
  14. Placais, P. Y., et al. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications. 8, 1-14 (2017).
  15. Mann, K., Deny, S., Ganguli, S., Clandinin, T. R. Coupling of activity, metabolism and behaviour across the Drosophila brain. Nature. 593 (7858), 244-248 (2021).
  16. Volkenhoff, A., Hirrlinger, J., Kappel, J. M., Klambt, C., Schirmeier, S. Live imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the Drosophila brain. Journal of Insect Physiology. 106 (1), 55-64 (2018).
  17. Gonzalez-Gutierrez, A., Ibacache, A., Esparza, A., Barros, L. F., Sierralta, J. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia. 68 (6), 1213-1227 (2020).
  18. Geistlinger, K., Schmidt, J. D. R., Beitz, E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS Nexus. 2 (2), 1-8 (2023).
  19. Pasco, M. Y., Leopold, P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PloS One. 7 (5), 1-8 (2012).
  20. McMullen, E., Weiler, A., Becker, H. M., Schirmeier, S. Plasticity of carbohydrate transport at the blood-brain barrier. Frontiers in Behavioral Neuroscience. 14, 1-15 (2020).
  21. Delgado, M. G., et al. Chaski, a novel Drosophila lactate/pyruvate transporter required in glia cells for survival under nutritional stress. Scientific Reports. 8 (1), 1-13 (2018).
  22. Stilwell, G. E., Saraswati, S., Littleton, J. T., Chouinard, S. W. Development of a Drosophila seizure model for in vivo high-throughput drug screening. European Journal of Neuroscience. 24 (8), 2211-2222 (2006).
  23. Lerchundi, R., Huang, N., Rose, C. R. Quantitative imaging of changes in astrocytic and neuronal adenosine triphosphate using two different variants of Ateam. Frontiers in Cellular Neuroscience. 14 (80), 1-13 (2020).
  24. Baeza-Lehnert, F., et al. Non-canonical control of neuronal Energy Status by the Na(+) Pump. Cell Metabolism. 29 (3), 668-680 (2019).
  25. Mattila, J., Hietakangas, V. Regulation of carbohydrate energy metabolism in Drosophilamelanogaster. Genetica. 207 (4), 1231-1253 (2017).
  26. De Backer, J., Grunwald, I. A role for glia in cellular and systemic metabolism: insights from the fly. Current Opinion in Insect Science. 53 (100947), 1-8 (2022).
  27. Loganathan, S., Ball, H., Manzo, E., Zarnescu, D. Measuring glucose uptake in Drosophila models of TDP-43 proteinopathy. Journal of Visualized Experiments. (174), e62936 (2021).
  28. Dienel, G., Rothman, D. L. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. Journal of Neurochemistry. , (2023).
  29. Gandara, L., Durrieu, L., Behrensen, C., Wappner, P. A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Scientific Reports. 9, 1-11 (2019).
  30. Gandara, L., Durrieu, L., Wappner, P. Metabolic FRET sensors in intact organs: Applying spectral unmixing to acquire reliable signals. BioRxiv. , (2023).
check_url/it/65846?article_type=t

Play Video

Citazione di questo articolo
González-Gutiérrez, A., Gaete, J., Esparza, A., Toledo, J., Köhler-Solis, A., Sierralta, J. Visualizing Monocarboxylates and Other Relevant Metabolites in the Ex Vivo Drosophila Larval Brain Using Genetically Encoded Sensors. J. Vis. Exp. (200), e65846, doi:10.3791/65846 (2023).

View Video