Summary

从斑马鱼幼虫中分离肠道进行单细胞RNA测序

Published: November 10, 2023
doi:

Summary

在这里,我们描述了一种在受精后 5 天从斑马鱼幼虫中分离肠道的方法,用于单细胞 RNA 测序分析。

Abstract

胃肠道 (GI) 执行一系列对生命至关重要的功能。影响其发育的先天性缺陷可导致肠道神经肌肉疾病,这凸显了了解胃肠道发育和功能障碍的分子机制的重要性。在这项研究中,我们提出了一种在受精后 5 天从斑马鱼幼虫中分离肠道的方法,以获得可用于单细胞 RNA 测序 (scRNA-seq) 分析的活细胞。该协议基于斑马鱼肠道的手动解剖,然后与木瓜蛋白酶酶解离。随后,将细胞提交荧光激活细胞分选,并收集活细胞进行scRNA-seq。通过这种方法,我们能够成功地识别不同的肠道细胞类型,包括上皮细胞、基质细胞、血液细胞、肌肉细胞和免疫细胞,以及肠道神经元和神经胶质细胞。因此,我们认为它是使用斑马鱼研究胃肠道在健康和疾病中的组成方面的宝贵资源。

Introduction

胃肠道 (GI) 是一个复杂的系统,在整体健康和福祉中起着至关重要的作用。它负责营养物质的消化和吸收,以及废物的消除 1,2。胃肠道由多种细胞类型组成,包括上皮细胞、平滑肌细胞、免疫细胞和肠神经系统 (ENS),它们紧密地相互通信以调节和维持适当的肠道功能 3,4,5。胃肠道发育的缺陷会对营养吸收、微生物群组成、肠脑轴和 ENS 等各个方面产生深远的影响,导致多种肠道神经肌肉疾病,例如先天性巨结肠和慢性假性肠梗阻 6,7。这些疾病的特征是由各种关键细胞(例如 Cajal 的间质细胞、平滑肌细胞和 ENS 6,8,9)的改变引起的严重肠道运动障碍。然而,胃肠道发育和功能障碍的分子机制仍然知之甚少。

斑马鱼是研究胃肠道发育和功能障碍的有价值的模式生物,因为它具有快速的胚胎发育、胚胎和幼虫阶段的透明度以及遗传可处理性 10,11,12,13,14。有许多表达荧光蛋白的转基因斑马鱼品系可供选择。这种品系的一个例子是tg(phox2bb:GFP)斑马鱼,通常用于研究ENS,因为所有phox2bb+细胞,包括肠神经元,都被标记为15,16。在这里,使用tg(phox2bb:GFP)斑马鱼系,我们提出了一种在受精后5天(dpf)幼虫肠道分离的方法,用于单细胞RNA测序(scRNA-seq)分析(图1)。

Protocol

所有斑马鱼的饲养和实验都是根据伊拉斯谟MC和动物福利立法的制度准则进行的。受精后 5 天使用斑马鱼幼虫属于不需要正式伦理批准的实验类别,如荷兰法规所述。 1.获得受精后5天(dpf)野生型和tg(phox2bb:GFP)幼虫 设置野生型斑马鱼的繁殖,并在 15 cm 培养皿中收集 50 个卵在 HEPES 缓冲的 E3 培养基(以下简称 E3)中。使用这些鱼作为荧光激活细?…

Representative Results

通过该协议,我们成功地从5个dpf幼虫中分离和解离了整个肠道。使用木瓜蛋白酶作为解离酶,我们显着增强了细胞活力,能够在 244 个分离的肠道中捕获 46,139 个涉及单个活细胞(占所有细胞的 6.4%)的事件(图 2A)。使用野生型全幼虫作为对照,以确保分选过程得到优化,从而实现有效的细胞鉴定和分选。整个幼虫可以用于我们只对活的单细胞进行分类(补充图S1B-E</…

Discussion

在这里,我们提出了一种使用FACS分离和解离5 dpf斑马鱼幼虫肠道的方法。通过这种方法,使用10x Genomics Chromium平台,通过scRNA-seq成功收集和分析了不同的肠道细胞类型。我们选择了tg(phox2bb:GFP)斑马鱼系,因为我们想要一个迹象,表明活的ENS细胞也将被分离出来(图2D)。然而,重要的是要注意,这种方法可以很容易地扩展到其他感兴趣的斑马鱼品系,因为我们只?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由索菲亚基金会之友(SSWO WAR-63)资助。

Materials

10x Trypsin (0.5%)-EDTA (0.2%) Sigma 59418C
5 mL round bottom tube with cell-strainer cap Falcon 352235
Agarose Sigma-Aldrich A9539
BD Falcon Round-Bottom Tube 5 mL (FACS tubes) snap cap BD Biosciences 352054
Cell Ranger v3.0.2 10X Genomics N/A
DAPI Sigma-Aldrich Cat#D-9542
Dissection microscope Olympus SZX16
FACSAria III sorter machine BD Biosciences N/A
HBSS with CaCl2 and MgCl2 Gibco 14025050
Insect pins Fine Science Tools 26000-25
L-Cysteine Sigma C7352
MS-222, Tricaine Supelco A5040-250G
Papain Sigma P4762
Seurat v3 Stuart et al. (2019) N/A
Trypan blue  Sigma  Cat#T8154

Riferimenti

  1. Saldana-Morales, F. B., Kim, D. V., Tsai, M. T., Diehl, G. E. Healthy intestinal function relies on coordinated enteric nervous system, immune system, and epithelium eesponses. Gut Microbes. 13 (1), 1-14 (2021).
  2. Sitrin, M. . The Gastrointestinal System. , (2014).
  3. Furness, J. B. The organisation of the autonomic nervous system: peripheral connections. Autonomic Neuroscience: Basic and Clinical. 130 (1-2), 1-5 (2006).
  4. Furness, J. B. The enteric nervous system and neurogastroenterology. Nature Reviews. Gastroenterology & Hepatology. 9 (5), 286-294 (2012).
  5. Obata, Y., Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 151 (5), 836-844 (2016).
  6. Heuckeroth, R. O. Hirschsprung disease – integrating basic science and clinical medicine to improve outcomes. Nature Reviews. Gastroenterology & Hepatology. 15 (3), 152-167 (2018).
  7. Antonucci, A., et al. Chronic intestinal pseudo-obstruction. World Journal of Gastroenterology. 14 (19), 2953-2961 (2008).
  8. De Giorgio, R., Sarnelli, G., Corinaldesi, R., Stanghellini, V. Advances in our understanding of the pathology of chronic intestinal pseudo-obstruction. Gut. 53 (11), 1549-1552 (2004).
  9. Bianco, F., et al. Enteric neuromyopathies: highlights on genetic mechanisms underlying chronic intestinal pseudo-obstruction. Biomolecules. 12 (12), 1849 (2022).
  10. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203 (3), 253-310 (1995).
  11. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nature Reviews. Genetics. 8 (5), 353-367 (2007).
  12. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  13. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K., Pack, M. Intestinal growth and differentiation in zebrafish. Mechanisms of Development. 122 (2), 157-173 (2005).
  14. Wallace, K. N., Pack, M. Unique and conserved aspects of gut development in zebrafish. Biologia dello sviluppo. 255 (1), 12-29 (2003).
  15. Harrison, C., Wabbersen, T., Shepherd, I. T. In vivo visualization of the development of the enteric nervous system using a Tg(-8.3bphox2b:Kaede) transgenic zebrafish. Genesis. 52 (12), 985-990 (2014).
  16. Kuil, L. E., Chauhan, R. K., Cheng, W. W., Hofstra, R. M. W., Alves, M. M. Zebrafish: a model organism for studying enteric nervous system development and disease. Frontiers in Cell and Developmental Biology. 8, 629073 (2020).
  17. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. Cell. 177 (7), 1888-1902 (2019).
  18. Kuil, L. E., et al. Unbiased characterization of the larval zebrafish enteric nervous system at a single cell transcriptomic level. iScience. 26 (7), 107070 (2023).
  19. Gao, Y., et al. Unraveling differential transcriptomes and cell types in zebrafish larvae intestine and liver. Cells. 11 (20), 3290 (2022).
  20. Jin, Q., et al. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. Journal of Genetics and Genomics. 49 (12), 1101-1113 (2022).
  21. Willms, R. J., Jones, L. O., Hocking, J. C., Foley, E. A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Reports. 38 (5), 110311 (2022).
  22. Kline, M. . Fishing for answers: Isolating enteric neurons and identifying putative ENS mutants. , (2016).
  23. Allan, K., DiCicco, R., Ramos, M., Asosingh, K., Yuan, A. Preparing a single cell suspension from zebrafish retinal tissue for flow cytometric cell sorting of Muller glia. Cytometry A. 97 (6), 638-646 (2020).
  24. Lopez-Ramirez, M. A., Calvo, C. F., Ristori, E., Thomas, J. L., Nicoli, S. Isolation and culture of adult zebrafish brain-derived neurospheres. Journal of Visualized Experiments. 53617 (108), 53617 (2016).
check_url/it/65876?article_type=t

Play Video

Citazione di questo articolo
Kakiailatu, N. J. M., Kuil, L. E., Bindels, E., Zink, J. T. M., Vermeulen, M., Melotte, V., Alves, M. M. Gut Isolation from Zebrafish Larvae for Single-cell RNA Sequencing. J. Vis. Exp. (201), e65876, doi:10.3791/65876 (2023).

View Video