Summary

使用定制压力传感器系统测量非营养性吸吮参数

Published: April 19, 2024
doi:

Summary

非营养性吸吮 (NNS) 设备可以使用连接到压力传感器并通过数据采集系统和笔记本电脑记录的安抚奶嘴轻松收集和量化 NNS 特征。NNS参数的量化可以为儿童当前和未来的神经发育提供有价值的见解。

Abstract

非营养性吸吮 (NNS) 装置是一种可移动、用户友好的压力传感器系统,可量化婴儿在安抚奶嘴上的 NNS 行为。使用我们的系统记录和分析 NNS 信号可以提供婴儿 NNS 脉冲持续时间 (s)、振幅 (cmH2O) 和频率 (Hz) 的测量值。准确、可靠和定量的 NNS 评估在作为未来喂养、言语语言、认知和运动发育的生物标志物方面具有巨大的价值。NNS设备已被用于许多研究领域,其中一些包括测量NNS特征以研究与喂养相关的干预措施的效果,表征跨群体的NNS发育,以及将吸吮行为与随后的神经发育相关联。该设备还被用于环境健康研究,以检查 子宫内的 暴露如何影响婴儿NNS的发育。因此,NNS设备的研究和临床应用的首要目标是将NNS参数与神经发育结果相关联,以识别有发育迟缓风险的儿童并提供快速的早期干预。

Introduction

非营养性吸吮 (NNS) 是婴儿出生后不久可以用嘴巴进行的最早发生的行为之一,因此有可能为大脑发育提供有意义的见解1。NNS是指没有营养摄入的吸吮运动(例如,吸吮安抚奶嘴),其特征是下巴和舌头的一系列有节奏的表情和吸吮运动,呼吸时有停顿。已经注意到 NNS 的常见参数包括平均 NNS 猝发(一系列吸吮周期),为 6-12 个吸吮周期,猝发内频率为每秒 2 次吸吮; 2;然而,NNS特征在临床人群中有所不同3,4并且在出生后的第一年内动态变化5。这些变化归因于口腔和相关解剖结构的生长、喂养技能和神经发育的成熟以及经验。NNS的神经基数主要包括位于脑干中央灰色的吸吮中枢模式发生器,该模式发生器由错综复杂的中间神经元网络以及面部和三叉神经运动神经元核组成6。协调的NNS还依赖于皮质和脑干区域之间完整的神经通路来调节其对感觉刺激的表现7,8这使得NNS成为早期神经功能和发育的可行指标。

NNS测量与早产儿的喂养成功率有关9,10吮和喂养结果都与随后的运动、沟通和认知发展有关11,12,13。在一项回顾性研究中,对 23 名有语言和运动障碍的学龄前儿童进行了描述,其中 87% 有早期喂养问题的历史,其中包括吸吮困难11.出生后立即的营养吸吮性能和照料者关于喂养困难的报告与 18 个月大儿童的多个神经发育领域显着相关12,14。有趣的是,在神经发育结果测量方面,喂养性能的敏感性和特异性高于大脑的超声评估12。在另一项研究中,在一组早产儿中,通过新生儿口腔运动评估量表15 评估的婴儿早期吸吮/口腔运动表现评分与 2 岁和 5 岁的运动技能、语言和智力测量相关13,16

鉴于吸吮和喂养可能是整个儿童期神经发育结果的敏感指标,因此迫切需要对 NNS 进行可访问、准确和定量的评估,以帮助识别有发育迟缓和紊乱风险的儿童,以提供早期干预。这种需求导致了语音与神经发育实验室(SNL)NNS设备的设计和研究利用。这款便携式设备包括一个安抚奶嘴,该安抚奶嘴连接到易于握持的手柄末端,连接到内部设计的定制压力传感器,并连接到数据采集中心 (DAC)。DAC连接到笔记本电脑,并通过数据采集和分析软件记录数据。压力传感器测量安抚奶嘴内部的压力变化,并将其转换为电压信号。DAC包含转换器,可将模拟电压信号转换为以cmH2O为单位的数字值,这些值通过数据采集和分析软件进行可视化和记录。可以从吸吮信号波形中分析的 NNS 结果测量包括 NNS 持续时间(以秒为单位测量的吸吮爆发持续时间)、振幅(以 cmH2O 为单位的峰高减去峰谷)、周期/突发(突发内的吸吮周期数)、频率(以 Hz 为单位测量的突发内频率)、周期(一分钟内发生的吸吮周期数)、 和突发(一分钟内发生的吸吮突发次数)。

Protocol

美国东北大学(Northeastern University)的机构审查委员会已经批准了使用NNS设备与人类受试者的研究(15-06-29;16-04-06;17-08-19)。已获得儿童照料者的知情同意。在使用 NNS 设备收集任何数据之前,所有研究人员都已完成人体受试者培训。SNL 团队为新研究人员生成了一些培训资源和协议,以便在使用 NNS 设备收集数据之前完成。这些培训课程包括审查以下协议。 1. NNS设备设置</…

Representative Results

NNS 设备已被用于许多已发表的研究,这些研究纳入了 NNS 结果测量 17,18,19。在图 7 所示的示例数据中,已使用以下标准手动识别突发:每个脉冲群有多个吸吮周期,振幅至少为 1 cmH2O 的周期,以及彼此相距 1000 ms 以内的吸盘波形。一旦识别出突发,自定义宏就会输出 NNS 结果。 <p class="jove_conten…

Discussion

NNS设备有几个限制,必须承认这些限制。尽管 NNS 为饲喂9 提供了关键的见解,但从 NNS 到饲喂性能有相当多的推断。针对这一限制的解决方案包括研究团队将NNS结果与实际喂养观察结果配对,并为护理人员提供全面的喂养相关问卷,以更全面地了解NNS与喂养的关系18。此外,婴儿可能具有模式良好的 NN,但由于需要协调吞咽营养物质的额外需求,因此在喂养方?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢以下 NIH 资金来源:DC016030 和 DC019902。我们还要感谢言语与神经发育实验室的成员以及参与我们众多研究的家庭。

Materials

Case Pelican 1560
Data Acquisition and Analysis Software/LabChart ADInstruments 8.1.25
Data Acquisition Center (PowerLab 2/26) ADInstruments ML826
Laptop Dell Latitude 5480
Pressure Calibrator Meriam Process Technologies M101
Soothie Pacifier Phillips Avent SCF190/01
Syringe CareTouch CTSLL1

Riferimenti

  1. Poore, M. A., Barlow, S. M. Suck predicts neuromotor integrity and developmental outcomes. Pers Speech Sci Orofacial Disorders. 19 (1), 44-51 (2009).
  2. Wolff, P. H. The serial organization of sucking in the young infant. Pediatrics. 42 (6), 943-956 (1968).
  3. Estep, E., Barlow, S. M., Vantipalli, R., Finan, D., Lee, J. Non-nutritive suck parameters in preterm infants with RDS. J Neonatal Nur. 14 (1), 28-34 (2008).
  4. Lau, C., Alagugurusamy, R., Schanler, R. J., Smith, E. O., Shulman, R. J. Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr. 89 (7), 846-852 (2000).
  5. Martens, A., Hines, M., Zimmerman, E. Changes in non-nutritive suck between 3 and 12 months. Early Human Dev. 149, 105141 (2020).
  6. Barlow, S. M., Estep, M. Central pattern generation and the motor infrastructure for suck, respiration, and speech. J Comm Disorders. 39 (5), 366-380 (2006).
  7. Poore, M., Zimmerman, E., Barlow, S. M., Wang, J., Gu, F. Patterned orocutaneous therapy improves sucking and oral feeding in preterm infants. Acta Paediatr. 97 (7), 920-927 (2008).
  8. Zimmerman, E., Foran, M. Patterned auditory stimulation and suck dynamics in full-term infants. Acta Paediatr. 106 (5), 727-732 (2017).
  9. Bingham, P. M., Ashikaga, T., Abbasi, S. Prospective study of non-nutritive sucking and feeding skills in premature infants. Arch Dis Childhood. 95 (3), F194-F200 (2010).
  10. Pineda, R., Dewey, K., Jacobsen, A., Smith, J. Non-nutritive sucking in the preterm infant. Am J of Perinatol. 36 (3), 268-277 (2019).
  11. Malas, K., Trudeau, N., Chagnon, M., McFarland, D. H. Feeding-swallowing difficulties in children later diagnosed with language impairment. Dev Med Child Neurol. 57 (9), 872-879 (2015).
  12. Mizuno, K., Ueda, A. Neonatal feeding performance as a predictor of neurodevelopmental outcome at 18 months. Dev Med Child Neurol. 47 (5), 299-304 (2005).
  13. Wolthuis-Stigter, M. I., et al. Sucking behaviour in infants born preterm and developmental outcomes at primary school age. Dev Med Child Neurol. 59 (8), 871-877 (2017).
  14. Adams-Chapman, I., Bann, C. M., Vaucher, Y. E., Stoll, B. J. Association between feeding difficulties and language delay in preterm infants using Bayley scales of infant development – Third edition. J Pediatr. 163 (3), 680-685 (2013).
  15. Palmer, M. M., Crawley, K., Blanco, I. A. Neonatal oral-motor assessment scale: A reliability study. J Perinatol. 13 (1), 28-35 (1993).
  16. Wolthuis-Stigter, M. I., et al. The association between sucking behavior in preterm infants and neurodevelopmental outcomes at 2 years of age. J Pediatr. 166 (1), 26-30 (2015).
  17. Hill, R. R., Hines, M., Martens, A., Pados, B. F., Zimmerman, E. A pilot study of non-nutritive suck measures immediately pre- and post-frenotomy in full term infants with problematic feeding. J Neonatal Nurs. 28 (6), 413-419 (2022).
  18. Hines, M., Hardy, N., Martens, A., Zimmerman, E. Birth order effects on breastfeeding self-efficacy, parent report of problematic feeding and infant feeding abilities. J Neonatal Nurs. 28 (1), 16-20 (2022).
  19. Murray, E. H., Lewis, J., Zimmerman, E. Non-nutritive suck and voice onset time: Examining infant oromotor coordination. PLoS One. 16 (4), 30250529 (2021).
  20. Zimmerman, E., DeSousa, C. Social visual stimuli increase infants suck response: A preliminary study. PLoS One. 13 (11), e0207230 (2018).
  21. Zimmerman, E., Carpenito, T., Martens, A. Changes in infant non-nutritive sucking throughout a suck sample at 3-months of age. PLoS One. 15 (7), e0235741 (2020).
  22. Kim, C., et al. Associations between biomarkers of prenatal metals exposure and non-nutritive suck among infants from the PROTECT birth cohort in Puerto Rico. Front Epidemiol. 2, 1057515 (2022).
  23. Morton, S., et al. Non-nutritive suck and airborne metal exposures among Puerto Rican infants. Sci Total Environ. 789, 148008 (2021).
  24. Zimmerman, E., et al. Associations of gestational phthalate exposure and non-nutritive suck among infants from the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) birth cohort study. Environ Int. 152, 106480 (2021).
  25. Zimmerman, E., et al. Examining the association between prenatal maternal stress and infant non-nutritive suck. Pediatr Res. 93, 1285-1293 (2023).
  26. Martens, A., Phillips, H., Hines, M., Zimmerman, E. An examination of the association between infant non-nutritive suck and developmental outcomes at 12 months. PLoS One. 19 (2), e0298016 (2024).
  27. Zimmerman, E., Barlow, S. M. Pacifier stiffness alters the dynamics of the suck central pattern generator. J Neonatal Nurs. 14 (3), 79-86 (2008).
  28. Zimmerman, E., Forlano, J., Gouldstone, A. Not all pacifiers are created equal: A mechanical examination of pacifiers and their influence on suck patterning. Am J Speech-Lang Pathol. 26 (4), 1202-1212 (2017).
  29. Choi, B. H., Kleinheinz, J., Joos, U., Komposch, G. Sucking efficiency of early orthopaedic plate and teats in infants with cleft lip and palate. Int J Oral Maxillofacial Surg. 20 (3), 167-169 (1991).
  30. Clark, H. M., Henson, P. A., Barber, W. D., Stierwalt, J. A. G., Sherrill, M. Relationships among subjective and objective measures of tongue strength and oral phase swallowing impairments. Am J Speech-Lang Pathol. 12 (1), 40-50 (2003).
  31. Wahyuni, L. K., et al. A comparison of objective and subjective measurements of non-nutritive sucking in preterm infants. Paediatr Indonesia. 62 (4), 274-281 (2022).
  32. Neiva, F. C. B., Leone, C., Leon, C. R. Non-nutritive sucking scoring system for preterm newborns. Acta Paediatr. 97 (10), 1370-1375 (2008).
  33. Pereira, M., Postolache, O., Girão, P. A smart measurement and stimulation system to analyze and promote non-nutritive sucking of premature babies. Measurement Sci Rev. 11 (6), 173-180 (2011).
  34. Grassi, A., et al. Sensorized pacifier to evaluate non-nutritive sucking in newborns. Med Eng Phys. 38 (4), 398-402 (2016).
  35. Cunha, M., et al. A promising and low-cost prototype to evaluate the motor pattern of nutritive and non-nutritive suction in newborns. J Pediatr Neonatal Individualized Med. 8 (2), 1-11 (2019).
  36. Nascimento, M. D., et al. Reliability of the S-FLEX device to measure non-nutritive sucking pressure in newborns. Audiol Comm Res. 24, e2191 (2019).
  37. Truong, P., et al. Non-nutritive suckling system for real-time characterization of intraoral vacuum profile in full term neonates. IEEE J Translat Eng Health Med. 11, 107-115 (2023).
  38. Ebrahimi, Z., Moradi, H., Ashtiani, S. J. A compact pediatric portable pacifier to assess non-nutritive sucking of premature infants. IEEE Sensors J. 20 (2), 1028-1034 (2020).
  39. Akbarzadeh, S., et al. Evaluation of Apgar scores and non-nutritive sucking skills in infants using a novel sensitized non-nutritive sucking system. 42nd Ann Int Conf IEEE Eng Med Biol Soc. , 4282-4285 (2020).
  40. Akbarzadeh, S., et al. Predicting feeding conditions of premature infants through non-nutritive sucking skills using a sensitized pacifier. IEEE Trans Biomed Eng. 69 (7), 2370-2378 (2022).
  41. Barlow, S. M., Finan, D. S., Lee, J., Chu, S. Synthetic orocutaneous stimulation entrains preterm infants with feeding difficulties to suck. J Perinatol. 28, 541-548 (2008).
  42. Barlow, S. M., et al. Frequency-modulated orocutaneous stimulation promotes non-nutritive suck development in preterm infants with respiratory distress syndrome or chronic lung disease. J Perinatol. 34, 136-142 (2014).
  43. Song, D., et al. Patterned frequency-modulated oral stimulation in preterm infants: A multicenter randomized controlled trial. PLoS One. 14 (2), e0212675 (2019).
  44. Soos, A., Hamman, A. Implementation of the NTrainer system into clinical practice targeting neurodevelopment of pre-oral skills and parental involvement. Newborn Infant Nurs Rev. 15 (2), 46-48 (2015).
check_url/it/66273?article_type=t

Play Video

Citazione di questo articolo
Westemeyer, R. M., Martens, A., Phillips, H., Hatfield, M., Zimmerman, E. Non-Nutritive Suck Parameters Measurements Using a Custom Pressure Transducer System. J. Vis. Exp. (206), e66273, doi:10.3791/66273 (2024).

View Video