Summary

AC Electrokinetic Phenomena Generated by Microelectrode Structures

Published: July 28, 2008
doi:

Summary

Manipulating fluids and suspended particles in the micro- and nano-scale is becoming more of a reality as enabling technologies, like AC electrokinetics, continue to develop. Here, we discuss the physics behind AC electrokinetics, how to fabricate these devices and how to interpret the experimental observations.

Abstract

The field of AC electrokinetics is rapidly growing due to its ability to perform dynamic fluid and particle manipulation on the micro- and nano-scale, which is essential for Lab-on-a-Chip applications. AC electrokinetic phenomena use electric fields to generate forces that act on fluids or suspended particles (including those made of dielectric or biological material) and cause them to move in astonishing ways1, 2. Within a single channel, AC electrokinetics can accomplish many essential on-chip operations such as active micro-mixing, particle separation, particle positioning and micro-pattering. A single device may accomplish several of those operations by simply adjusting operating parameters such as frequency or amplitude of the applied voltage. Suitable electric fields can be readily created by micro-electrodes integrated into microchannels. It is clear from the tremendous growth in this field that AC electrokinetics will likely have a profound effect on healthcare diagnostics3-5, environmental monitoring6 and homeland security7.

In general, there are three AC Electrokinetic phenomena (AC electroosmosis, dielectrophoresis and AC electrothermal effect) each with unique dependencies on the operating parameters. A change in these operating parameters can cause one phenomena to become dominant over another, thus changing the particle or fluid behavior.

It is difficult to predict the behavior of particles and fluids due to the complicated physics that underlie AC electrokinetics. It is the goal of this publication to explain the physics and elucidate particle and fluid behavior. Our analysis also covers how to fabricate the electrode structures that generate them, and how to interpret a wide number of experimental observations using several popular device designs. This video article will help scientists and engineers understand these phenomena and may encourage them to start using AC Electrokinetics in their research.

Protocol

Fabricating Cr/Au Electrodes on Glass Substrates Part 1A: Wet Etch Method *For the highest quality devices, the fabrication process should be performed in a clean room environment or under laminar flow hoods so that dust and other contaminants won’t affect the pattern.  2-inch by 4-inch Glass slides are placed in a heated (80°C) Piranha solution (5:7 H2O­2:H2SO4) for 30 minutes to remove contaminants (…

Discussion

In this video, we have shown a wide variety of particle and fluid manipulation behaviors caused by AC electrokinetic phenomena. The electrodes that generate these phenomena are easy to fabricate and can be easily integrated into many other systems. As we have shown, there are numerous applications for the use of AC electrokinetics. The versatility of these devices, as well as the rapid nature of manipulation, makes them particularly attractive. As healthcare and other industries begin to embrace lab-on-a-chip systems, we…

Materials

Material Name Tipo Company Catalogue Number Comment
2″ by 4″ Pyrex Glass Slide Substrate     Pyrex 7740
chrome mask material     This photomask will have the microelectrode patterns on them and can be ordered from a variety of microfabrication centers.
PDMS Microchannels material     These may be fabricated and used in-house or a simple microscope slide will suffice.
Hydrogen Peroxide 30% Reagent Fisher Scientific 7722-84-1 Certified ACS, Fisher Scientific
Sulfuric Acid Reagent Fisher Scientific A300-212 Certified ACS Plus
Acetone Electronic Grade Reagent Fisher Scientific A946-4  
Shipley 1827 Positive Photoresist Reagent Microchem Inc.    
Shipley 351 Developer Reagent Microchem Inc.    
Gold Etchant Reagent Transene Company, Inc. Type TFA  
Chrome Photomask Etchant Reagent Cyantek Corporation CR-7S  
NR-7 1500 PY Negative Resist Reagent Futurrex    
RD6 Developer Reagent Futurrex    

Riferimenti

  1. Ramos, A., et al. AC Electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics. 31, 2338-2353 (1998).
  2. Morgan, H. y. w. e. l., Green, N. G. AC Electrokinetics: colloids and nanoparticles. , (2002).
  3. Toner, M., Irimia, D. Blood-on-a-chip. Annual Review of Biomedical Engineering. 2005, 77-103 (2005).
  4. Ahn, C. H., Choi, J. -. W., Beaucage, G., Nevin, J. H., Lee, J. -. B., Puntambekar, A., Lee, J. Y. Disposable smart lab on a chip for point of care clinical diagnostics. 282, 399-401 (1998).
  5. Vespoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis. 23, 677-712 (2002).
  6. Rajaraman, S., et al. Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sensors and Actuators B: Chemical. 114, 392-401 (2006).
  7. Ali, Z. Lab-on-a-chip for terrorist weapons management. Measurement and Control. 38, 87-91 (2005).
  8. Voldman, J. o. e. l., Rosenthal, A. d. a. m. Dielectrophoretic Traps for Single-particle Patterning. Biophysical Journal. 88, 2193-2205 (2005).
  9. Ramachandran, T. R., Baur, C., Bugacov, A., Madhukar, A., Koel, B. E., Requicha, A., Gazen, C. Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope. Nanotechnology. 9, 237-245 (1998).
  10. Sigurdson, M. a. r. i. n., Wang, D., Meinhart, C. D. Electrothermal stirring for heterogeneous immunoassays. Lab Chip. 5, 1366-1373 (2005).
  11. Urbanski, J. o. h. n. . P. a. u. l., Levitan, J. e. r. e. m. y. A., Bazant, M. a. r. t. i. n. Z., Thorsen, T. Fast ac electro-osmotic micropumps with non-planar electrodes. Appl. Phys. Lett. 89, 143508 (2006).
  12. Fatoyinbo, H. O., et al. An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications. Biosens Bioelectron. 23, 225-232 (2007).
check_url/it/813?article_type=t

Play Video

Citazione di questo articolo
Hart, R., Oh, J., Capurro, J., Noh, H. (. AC Electrokinetic Phenomena Generated by Microelectrode Structures. J. Vis. Exp. (17), e813, doi:10.3791/813 (2008).

View Video