Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove

26.13: Drugs that Destabilize Microtubules

TABLE OF
CONTENTS
JoVE Core
Cell Biology

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

Education
Drugs that Destabilize Microtubules
 
TRANSCRIPT

26.13: Drugs that Destabilize Microtubules

Microtubules are dynamic structures and can be regulated by microtubule targeting agents (MTAs). Microtubule destabilizing drugs are a class of MTAs that destabilize and prevent microtubules' polymerization. Both natural and synthetic chemicals can be found under this class of drugs. Vincristine and vinblastine, two vinca alkaloids, and colchicine were among the first to be discovered. These drugs can affect cells in various ways, either by inducing a change in cell morphology, preventing spindle formation in dividing cells, activating kinase activity, to regulate expression of B-cell lymphoma 2 (BCL-2), or affecting dynein interactions. These changes ultimately lead to necrosis or apoptosis of cells.

Different binding sites for microtubule destabilizing drugs have been identified—colchicine binding site, which is also used by drugs like podophyllotoxin and combretastatin. Vinca alkaloid binding site where drugs like vinblastin, vincristine, dolastatin 10, and dolastatin 15 can bind.

Vinca alkaloids, vincristine, and vinblastine owing to their ability to destabilize or prevent polymerization of microtubules have been widely used as anticancer drugs against diseases like breast cancer, lymphomas, and sarcomas. In 1958, Vinblastin was first isolated from Catharanthus roseus, and it was first approved for a drug trial in 1994 against breast cancer. Vinorelbine, another vinca alkaloid, shows suppression of angiogenesis in tumor cells. It further prevents nutrient and oxygen supply from reaching the tumor cells, leading to starvation and ultimately apoptosis. Maytansinoids and auristatins, another group of microtubule destabilizing drugs, have different binding sites close to the vinca binding sites on the microtubules, where they promote depolymerization. These drugs help prevent cell division by disrupting the spindle apparatus leading to cell arrest.


Suggested Reading

Tags

Keywords: Microtubules Microtubule Targeting Agents (MTAs) Microtubule Destabilizing Drugs Vinca Alkaloids Colchicine Vincristine Vinblastine Podophyllotoxin Combretastatin Vinorelbine Maytansinoids Auristatins Cell Morphology Spindle Formation Kinase Activity BCL-2 Dynein Necrosis Apoptosis Anticancer Drugs Breast Cancer Lymphomas Sarcomas Angiogenesis

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter