JoVE 과학 교육
Immunology
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 과학 교육 Immunology
Antibody Generation: Producing Monoclonal Antibodies Using Hybridomas
  • 00:01Concepts
  • 02:51Hybridoma Expansion
  • 06:04Antibody Production in Serum-Free Medium
  • 07:28Antibody Purification – Day 1
  • 09:25Antibody Purification – Days 2-4
  • 12:00Analysis and Results

抗体生成:使用杂交瘤生产单克隆抗体

English

소셜에 공유하기

개요

资料来源:弗朗西斯·萨亚斯塔德1,2,惠特尼·斯旺森2,3和托马斯·格里菲斯1,2,3,4
1明尼苏达大学明尼阿波利斯分校微生物学、免疫学和癌症生物学研究生课程,MN 55455
2明尼苏达大学明尼阿波利斯分校免疫学中心,MN 55455
3明尼苏达大学泌尿科,明尼阿波利斯,MN 55455
4共济会癌症中心,明尼苏达大学明尼阿波利斯分校,MN 55455

多边克隆抗体被定义为针对抗原或多种抗原的不同抗原决定子(1)的抗体的集合。虽然多克隆抗体是识别生物分子的有力工具,但有一个重要的局限性 – 它们无法区分具有抗原决定因素的抗原。例如,当牛血清白蛋白用于给动物接种疫苗时,具有不同表面Ig的B细胞对牛血清白蛋白上不同的抗原决定因素有反应。结果是抗血清中的抗体混合物。由于牛血清白蛋白与人类血清白蛋白在进化保存区域与人血清白蛋白共享一些表皮,这种抗牛血清白蛋白抗血清也会与人血清白蛋白发生反应。因此,这种抗血清对区分牛和人血清白蛋白没有用处。

为了克服多克隆抗血清的特异性问题,我们采取了几种方法。一种是通过通过固定抗原(2)的色谱柱吸收不需要的抗体。这种方法是乏味的,往往不能完全去除不需要的抗体。另一种方法是分离单个产生抗体的B细胞,并在培养中扩大它们。然而,像大多数正常未转化的细胞一样,B细胞在长期培养中无法存活。

为了克服B细胞在培养中生存的能力,一种方法是制备骨髓瘤-B细胞杂交瘤。1847年,亨利·本斯-琼斯发现多发性骨髓瘤(一种淋巴瘤)患者产生了大量抗体(3)。这些患者的B细胞已经变得恶性,并不受控制地生长。由于恶性B细胞来自单个克隆,它们相同,只产生一种类型的抗体(单克隆抗体或mAb)。然而,这些骨髓瘤细胞大多产生未知特异性的抗体。1975年,塞萨尔·米尔斯坦和乔治·科勒通过将骨髓瘤细胞融合到B细胞中,成功地培育出一种可以在体外无限期培养的杂交瘤,并产生无限数量的已知抗原特异性的单克隆抗体(4)。其方法背后的原理是结合骨髓瘤细胞的不朽特性和产生B细胞的抗体特性。其技术彻底改变了抗体生产,为使用单克隆抗体识别和纯化生物分子提供了强有力的手段。

一般来说,制备单克隆抗体需要几个月。一般过程包括以下步骤:

  1. 抗体皮毒的免疫和筛选
  2. 产生抗体的B细胞和骨髓瘤细胞的融合
  3. 杂交瘤的选择性生长
  4. 筛选杂交瘤以产生所需的单克隆抗体
  5. 通过限制稀释进行克隆 – 将细胞稀释到浓度以统计上允许向 96 孔板的孔中添加少于 1 个细胞的过程。有些井最终将有0个细胞,有些将有1个细胞。种子有1个细胞的井最终将长成单克隆细胞群。
  6. 杂交瘤的生长与单克隆抗体的制备

该协议侧重于最后一步 – 杂交瘤的生长和单克隆抗体的制备。抗体通过硫酸铵沉淀(通常称为盐化)从培养上清液中纯化 – 一种常用的方法,从溶液中去除蛋白质。溶液中的蛋白质与其他亲水性相互作用一起通过暴露的极性组和离子组与水形成氢键。当加入小、高电荷离子(如铵或硫酸盐)的浓度时,这些组与蛋白质竞争与水结合。这从蛋白质中去除水分子,降低其溶解度,导致蛋白质沉淀。

Procedure

注意:在以无菌方式处理混合瘤细胞和介质时(例如,在生物安全柜中),在抗体净化步骤之前,应保持无菌细胞培养技术。 1. 解冻冷冻杂交细胞 在37°C水浴中孵育含有冷冻杂交瘤细胞的瓶,直到刚解冻(约2分钟)。 将解冻细胞加入含有10 mL完整RPMI(RPMI补充10%胎儿牛血清、100 U/mL青霉素、100微克/mL链霉素、1mM丙酸钠、1x非必需氨基酸?…

Results

Using this protocol, we have obtained the following results with several different hybridomas:

Hybridoma: RB6-BC5 (rat anti-mouse Ly6C/Ly6G (Gr1) IgG2b, κ mAb)
OD280 – 1.103
(1.103/1.43)(20) = 15.42 mg/mL

Hybridoma: GK1.5 (rat anti-mouse CD4 IgG2b, κ mAb)
OD280 – 0.485
(0.485/1.43)(20) = 6.78 mg/mL

Hybridoma: 2.43 (rat anti-mouse CD8 IgG2b, κ mAb)
OD280 – 0.209
(0.209/1.43)(20) = 2.92 mg/mL

These are all example results, and it is important to note that each production run with the same hybridoma can be slightly different in the amount of mAb available at the end.

Applications and Summary

The procedure outlined above is a simple, straight-forward way to purify monoclonal antibodies from hybridoma culture supernatant. It is important to remember, though, that the ammonium sulfate will precipitate other proteins that may be in the culture supernatant. Consequently, the antibody concentrations determined from the absorbance measurements are estimates. The user may wish to assess the purity of the dialyzed sample by running a small amount on an SDS-polyacrylamide gel. The mAb produced by a hybridoma, once purified using this methodology, can be used in a variety of ways. The above-described RB6-BC5, GK1.5, and 2.43 mAb are commonly used for in vivo depletion of neutrophils, CD4 T cell, and CD8 T cells, respectively, in mice. Other mAb produced and purified using this protocol can be used for flow cytometry (when conjugated to a fluorophore or in conjunction with a secondary Ab), ELISA, or Western blotting.

References

  1. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR Journal, 46 (3), 258-268 (2005).
  2. Arora S, Ayyar BV, O'Kennedy R. Affinity chromatography for antibody purification Methods Mol Biol. 1129, 497-516 (2014).
  3. Henry BJ. On a new substance occurring in the urine of a patient with mollities ossium. Philosophical Transactions of the Royal Society of London. 138, 55-62 (1848).
  4. Köhler G and Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. 256, 495-497 (1975).

내레이션 대본

Antibodies are a powerful tool for research and diagnosis, which means producing them in large quantities is often necessary.

The first step to generating antibodies is to inject the antigen of interest into a host animal. The antigen activates the host’s B-cells which then produce and release antibodies specific to that antigen. Then, regular screening of the host animal’s antisera for the presence of the target antibody is carried out, using ELISA or another detection method. Once it’s detected, the host animal’s spleen, which contains the B-cells, is removed. If all of the B-cells from the spleen are now isolated, this should include a population which are secreting antibodies to the antigen of interest. We refer to this population as polyclonal, because each cell likely bound to a different epitope of the antigen, and therefore, generated its own individual and unique antibody.

To generate monoclonal antibodies, antibodies raised to recognize one specific epitope, the individual B-cell that produces the desired antibody must first be isolated and cultured. Unfortunately, B-cells do not survive well in culture. So to overcome this hurdle, scientists fuse B-cells with immortal myeloma cells, resulting in hybridomas. These cells are then grown in a selective medium that only allows the hybridomas to grow and release antibodies. Again, the medium is screened using a method such as ELISA for the desired antibody. Once it is detected, the hybridomas are cloned via a process called limiting dilution, a serial dilution of the parent culture, which should result in single cells being seeded into the wells of a screening plate. This allows growth of hybridomas from a single parent cell, yielding a monoclonal cell line that only releases the desired antibody. These monoclonal lines can be expanded in tissue culture flasks to produce large quantities of monoclonal antibody. After this, as the cells begin to die off, the antibodies can be precipitated from the medium with ammonium sulfate. Normally, in solution, antibodies interact with water through hydrophilic interactions. However, ammonium and sulfate are highly-charged ions that separate the water molecules from the antibodies, decreasing the solubility of the antibodies and causing them to precipitate.

To begin, first check the list of materials and prepare all the media, supplies, and work surfaces for the protocol.

Then, turn on a water bath and set it to 37 degrees Celsius. Next, add 10 milliliters of complete RPMI to a 15-milliliter conical tube and 15 milliliters of complete RPMI to a T75 cell culture flask and set them aside. Using caution and wearing the appropriate personal protective equipment, remove the frozen vial containing hybridoma cells from the liquid nitrogen storage. To release the pressure inside the vial, loosen the cap slightly. Now, carefully incubate the vial in the water bath, making sure that the cap remains above the water surface to minimize the chances of contamination. When the cells are almost thawed, which typically takes around two minutes, move the vial to the tissue culture hood.

Then, wipe the outside of the vial with 70% ethanol before removing the cap. Using a sterile pipette, transfer the cells into the conical tube that contains 10 milliliters of complete RPMI medium. Then, centrifuge the tube for five minutes at 1200 RPM. After centrifugation, move the tube back to the tissue hood and wipe the outside of the tube with ethanol. Without disturbing the pellet, discard the supernatant and then add five milliliters of fresh complete RPMI medium and gently pipette up and down to resuspend. Next, transfer the cells to the T75 cell culture flask and place the flask inside a 5% carbon dioxide incubator at 37 degrees Celsius. Allow the cells to reach approximately 80% confluency, which usually takes about three days. Notice that hybridoma cells are nonadherent and will grow suspended in the medium. The time to reach sufficient confluency may vary based on the starting number of live cells and the type of hybridoma cell used.

Once the cells are sufficiently confluent, use a sterile 25-milliliter pipette to transfer them from the culture flask into a conical centrifuge tube. Pellet the cells by centrifugation at 1200 RPM for five minutes. While the cells are in the centrifuge, add 18 milliliters of complete RPMI into each of three new T75 cell culture flasks and set these aside. After centrifugation, remove the supernatant and gently resuspend the cell pellet in six milliliters of complete RPMI. Next, add two milliliters of the cell suspension into each of the three new cell culture flasks. Finally, place the flasks into an incubator set to 5% carbon dioxide and 37 degrees Celsius and incubate until the flasks are around 80% confluent, approximately three days.

At this point, the cells are ready to continue their growth in the serum-free medium designed for hybridoma cell lines, such as commercially-available HB Basal Liquid medium containing the HB101 supplement. Transfer the cells from each cell culture flask into conical centrifuge tubes and then pellet the cells by centrifugation at 1200 RPM for five minutes. Now, add 230 milliliters of supplemented HB101 serum-free medium into each of six 225-centimeter-squared cell culture flasks and set them aside. When centrifugation is complete, remove the supernatant and resuspend each pellet in 10 milliliters of supplemented HB101 medium. Then, into each cell culture flask, add five milliliters of the cell suspension. Place the flasks in the 5% carbon dioxide incubator at 37 degrees Celsius and continue growing the cells for about three weeks. During this time, the cells will produce and release the monoclonal antibody of interest into the culture medium and the antibody will be ready for purification when the cells start to die.

To remove the cellular debris from the antibody-containing culture media, pour the contents of the culture flasks into tubes for a fixed angle rotor. Place the tubes in the rotor and make sure it is properly balanced prior to centrifugation. Spin the tubes at 10,000 RPM for eight minutes. While the samples are centrifuging, place a two-liter plastic beaker with a stir bar into an ice bucket and then put the ice bucket on a stir plate.

Next, attach a 500-milliliter filter top to a one-liter bottle. Attach this bottle top filter unit to a house vacuum using the appropriate tubing. Then, pour the supernatant that contains the antibody into the filter top. Centrifuge the remaining media to separate the cell debris from the antibody-containing supernatant. When the filter top is full of supernatant, start the vacuum. Then, when the one-liter collection bottle is close to full, remove the filter top and pour the filtered supernatant into the two-liter beaker on ice. Repeat the filtration steps until all of the supernatant is processed.

When all of the sample has been processed, weigh 295 grams of ammonium sulfate per one liter of filtered supernatant. Start the stir plate and slowly add the ammonium sulfate to the supernatant over the next couple of hours. This prevents a localized high concentration of ammonium sulfate salt that may cause unwanted proteins to precipitate. Once all of the ammonium sulfate has been added, cover the beaker with foil and move it, along with the stir plate, to a cold room at four degrees Celsius and set it to stir the antibody solution overnight.

The next morning, pour the ammonium sulfate-containing antibody solution from the two-liter beaker into clean tubes for the fixed angle rotor. Centrifuge the tubes at 6500 RPM for 20 minutes without break to pellet the antibody at the bottom of the tubes. Next, vacuum aspirate the supernatant, using caution not to suck up the soft pellet. Continue using the same set of tubes to collect the pelleted antibody from the remainder of the ammonium sulfate-containing supernatant. After the last aspiration, re suspend each antibody pellet in approximately one milliliter of PBS.

To remove the ammonium sulfate from the antibody solution, first cut approximately one inch of dialysis tubing for each milliliter of antibody solution. Next, wipe the tubing with distilled water and tie a knot on one end of the tubing. Fill the tubing with distilled water to check for leakage from the knot. If there is no leakage after a few minutes, empty the water out of the tubing.

Next, pipette the antibody solution into the tubing. To recover as much antibody as possible, rinse the tubes with an additional 0.25 milliliters of PBS and transfer this to the tubing also. Secure the top of the tubing as close to the solution as possible with a dialysis clip. Then, tape the top of the tubing to the outside top of a four-liter beaker with the filled portion of the tubing hanging into the beaker. Now, take the beaker to the four degree Celsius cold room and place it onto a stir plate. Fill the beaker to the top with PBS and add a stir bar. Allow the tube and solution to stir overnight for approximately eight hours. The next morning, replace the PBS in the beaker with fresh PBS and then leave the beaker to stir again for approximately eight hours. Later that evening, repeat the process one final time. In the morning, open up the dialysis tube and then transfer the antibody solution from the tubing to 15-milliliter conical tubes. To remove any precipitant that may have formed during dialysis, centrifuge the tubes for five minutes at 1200 RPM. Finally, transfer the supernatant to fresh tubes.

To quantify the antibody concentration, first make a 20-fold dilution by adding five microliters from an antibody aliquot to 95 microliters of PBS. Then, pipette the diluted antibody into a cuvette and use a spectrophotometer to record the concentration at 280 nanometers. Next, calculate the antibody concentration using the formula shown. Finally, label screw cap vials with the antibody name, concentration, date of preparation, and, if applicable, batch number and experimenter name, and then aliquot the antibody into the labeled screw cap vials. These can be stored at minus 80 degrees Celsius until needed.

Example yields using the 120G8 anti-mouse CD317 or PDCA-1 hybridoma line ranged between 44 and 99.6 milligrams, which typically yields, on average, 67.3 milligrams amount. It is important to note that each production run with the same hybridoma cell line can be slightly different in the amount of monoclonal antibody available at the end.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Antibody Generation: Producing Monoclonal Antibodies Using Hybridomas. JoVE, Cambridge, MA, (2023).