Summary

Whole Mount in Situ Hybridization of E8.5 to E11.5 Mouse Embryos

Published: October 10, 2011
doi:

Summary

This whole mount in situ hybridization protocol discusses critical steps that ensure reproducible high quality results for gene expression studies in E8.5-E11.5 day old mouse embryos.

Abstract

Whole mount in situ hybridization is a very informative approach for defining gene expression patterns in embryos. The in situ hybridization procedures are lengthy and technically demanding with multiple important steps that collectively contribute to the quality of the final result. This protocol describes in detail several key quality control steps for optimizing probe labeling and performance. Overall, our protocol provides a detailed description of the critical steps necessary to reproducibly obtain high quality results. First, we describe the generation of digoxygenin (DIG) labeled RNA probes via in vitro transcription of DNA templates generated by PCR. We describe three critical quality control assays to determine the amount, integrity and specific activity of the DIG-labeled probes. These steps are important for generating a probe of sufficient sensitivity to detect endogenous mRNAs in a whole mouse embryo. In addition, we describe methods for the fixation and storage of E8.5-E11.5 day old mouse embryos for in situ hybridization. Then, we describe detailed methods for limited proteinase K digestion of the rehydrated embryos followed by the details of the hybridization conditions, post-hybridization washes and RNase treatment to remove non-specific probe hybridization. An AP-conjugated antibody is used to visualize the labeled probe and reveal the expression pattern of the endogenous transcript. Representative results are shown from successful experiments and typical suboptimal experiments.

Protocol

1. Riboprobe generation via in vitro transcription Preparing PCR products for in vitro transcription templates. Designing PCR primers with phage transcription promoter sequences in their 5′ ends. Note: The promoter sequence added to 5’end of the sense-strand PCR primer will be used for transcribing the sense probe, and the promoter sequence added to 5’end of the antisense PCR primer will be used for synthesizing the anti-sense probe1-3. We…

Discussion

The methods described in this protocol have been adapted from a number of different sources and optimized for whole mount E8.5-E11.5 day old mouse embryos. Methods for whole mount in situ hybridization of vertebrate embryos first appeared in the early 1990s 2,5-12. This protocol was adapted primarily from methods developed for Xenopus embryos 7,8 as well as mouse 2,11. In our protocol a great deal of emphasis is placed on careful quality assessment of the probe. Careful atten…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants R21MH082360 (BGC) and R01HD056315 (NRM) as well as the University of Georgia.

Materials

Name Type Company Catalogue number Comments
Digoxigenin-11-uridine-5′-triphosphate Reagent Roche 11209256910  
Ribonucleoside Triphosphate Set Reagent Roche 11277057001  
Quick Spin Columns for radiolabeled RNA purification Supply Roche 11274015001  
T7 RNA polymerase Reagent Roche 10881767001  
SP6 RNA polymerase Reagent Roche 10810274001  
T3 RNA polymerase Reagent Roche 11031163001  
CTP, [α-32P]- 800Ci/mmol 10mCi/ml , 250 μCi Reagent Perkin Elmer BLU008X250UC  
DNase I recombinant, RNase-free Reagent Roche 4716728001  
Urea,Colorless-to-white Crystals or Crystalline Powder Reagent Fisher BP169-500  
Gel loading buffer Reagent Ambion AM8547  
Hybond-N+, Amersham Supply GE Healthcare RPN82B  
UV Stratalinker 2400 Equipment Stratagene    
Diethyl pyrocarbonate Reagent Sigma D5758-100ML  
Heparin sodium Reagent Acros 41121-0010  
hydrogen peroxide 30% in water Reagent Fisher scientific BP2633-500  
Gluteraldehyde, 8% EM grade Reagent Polysciences 0/710 Use with caution according to manufacture’s instructions
Blocking reagent Reagent Roche 11096176001 Make into 5% stock and store at -20° C
Proteinase K Reagent Roche 3115852001  
Rnase A Reagent Roche 10109142001 Make as 10 mg/ml stock and store at -20° C.
Rnase T1 Reagent Roche 10109193001  
Ultrapure Formamide Reagent Invitrogen 15515-026  
Levamisole hydrochloride Reagent ICN Biomedicals. Inc 155228  
Ribonucleic acid from torula yeast,Type VI Reagent Sigma R6625 phenol/chloroform extracted several times and precipitated, resuspended in DEPC-dH2O and stored at -20° C
Anti-Digoxigenin-AP Fab fragments Reagent Roche 11093274910  
BM Purple AP Substrate, precipitating. Ready-to-use solution. Reagent Roche 11 442 074 001  
4mL, Clear, Closed Top, Storage Vial Convenience Kit Supply National scientific B7800-2  
Shake N Bake hybridization oven Equipment Boekel Scientific 136400  
Biopsy Sure-Tek Supply Fisherbrand 15-200-402C  
Paraplast Plus tissue embedding medium Reagent Fisherbrand 23-021-400  
Peel-A-Way disposable plastic tissue embedding molds Supply Polysciences 18646A  
Colorfrost Plus Microscope slides Supply Fisherbrand 12-550-17  
Nuclear Fast Red Reagent Sigma N8002  
Cytoseal 60 Reagent Richard-Allan Scientific 8310-16  

References

  1. Divjak, M., Glare, E. M., Walters, E. H. Improvement of non-radioactive in situ hybridization in human airway tissues: use of PCR-generated templates for synthesis of probes and an antibody sandwich technique for detection of hybridization. J. Histochem. Cytochem. 50, 541-548 (2002).
  2. Wilkinson, D. G., Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361-373 (1993).
  3. Logel, J., Dill, D., Leonard, S. Synthesis of cRNA probes from PCR-generated DNA. Biotechniques. 13, 604-610 (1992).
  4. Maddox, D. M., Condie, B. G. Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development. BMC Dev Biol. 1, 1-1 (2001).
  5. Conlon, R. A., Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development. 116, 357-368 (1992).
  6. Krauss, S. Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. EMBO J. 10, 3609-3619 (1991).
  7. Hemmati-Brivanlou, A. Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development. 110, 325-330 (1990).
  8. Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685-695 (1991).
  9. Herrmann, B. G. Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development. 113, 913-917 (1991).
  10. Conlon, R. A., Herrmann, B. G. Detection of messenger RNA by in situ hybridization to postimplantation embryo whole mounts. Methods Enzymol. 225, 373-383 (1993).
  11. Parr, B. A., Shea, M. J., Vassileva, G., McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development. 119, 247-261 (1993).
  12. Rosen, B., Beddington, R. S. Whole-mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends Genet. 9, 162-167 (1993).
  13. Quiring, R. Large-scale expression screening by automated whole-mount in situ hybridization. Mech. Dev. 121, 971-976 (2004).
  14. Thut, C. J., Rountree, R. B., Hwa, M., Kingsley, D. M. A large-scale in situ screen provides molecular evidence for the induction of eye anterior segment structures by the developing lens. Dev. Biol. 231, 63-76 (2001).
  15. Neidhardt, L. Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos. Mech. Dev. 98, 77-94 (2000).
  16. Gordon, J., Bennett, A. R., Blackburn, C. C., Manley, N. R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal. 103, 141-143 (2001).
check_url/kr/2797?article_type=t

Play Video

Cite This Article
Wei, Q., Manley, N. R., Condie, B. G. Whole Mount in Situ Hybridization of E8.5 to E11.5 Mouse Embryos. J. Vis. Exp. (56), e2797, doi:10.3791/2797 (2011).

View Video