Summary

Chromatin Immunoprecipitation from Dorsal Root Ganglia Tissue following Axonal Injury

Published: July 20, 2011
doi:

Summary

We present a method for chromatin immunoprecipitation from dorsal root ganglia tissue following axonal injury. The approach can be used to identify specific transcription factor binding sites and epigenetic modification of histone and DNA important for the regeneration of injured axons in both the peripheral and central nervous system.

Abstract

Axons in the central nervous system (CNS) do not regenerate while those in the peripheral nervous system (PNS) do regenerate to a limited extent after injury (Teng et al., 2006). It is recognized that transcriptional programs essential for neurite and axonal outgrowth are reactivated upon injury in the PNS (Makwana et al., 2005). However the tools available to analyze neuronal gene regulation in vivo are limited and often challenging.

The dorsal root ganglia (DRG) offer an excellent injury model system because both the CNS and PNS are innervated by a bifurcated axon originating from the same soma. The ganglia represent a discrete collection of cell bodies where all transcriptional events occur, and thus provide a clearly defined region of transcriptional activity that can be easily and reproducibly removed from the animal. Injury of nerve fibers in the PNS (e.g. sciatic nerve), where axonal regeneration does occur, should reveal a set of transcriptional programs that are distinct from those responding to a similar injury in the CNS, where regeneration does not take place (e.g. spinal cord). Sites for transcription factor binding, histone and DNA modification resulting from injury to either PNS or CNS can be characterized using chromatin immunoprecipitation (ChIP).

Here, we describe a ChIP protocol using fixed mouse DRG tissue following axonal injury. This powerful combination provides a means for characterizing the pro-regeneration chromatin environment necessary for promoting axonal regeneration.

Protocol

1. Sciatic & dorsal column nerve injury The animal is placed on a surgical towel and underneath it a thermopad is present throughout the procedure keeping the body temperature of the mouse at 37°C. All animals are anesthetized for surgery with a continuous isoflurane/O2 administration. Surgical instruments are autoclaved before the procedure. For sciatic injury, both hindquarters are carefully shaved, and depilation is completed with generic hair remover prior to cleansing skin wi…

Discussion

This protocol provides a method to directly ask about the chromatin environment during axonal regeneration in the adult nervous system following axonal injury. It incorporates the DRG injury model with chromatin immunoprecipitation to probe the transcriptional and epigenetic environment subsequent to injury to either the PNS or CNS. It is particularly useful for investigators who would like to characterize putative binding sites for their favorite transcription factor, and to determine whether the occupancy of these s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Andrea Tedeschi for help in setting the initial ChIP experiments in the laboratory and Ricco Lindner for his contribution to fine tune the conditions for ChIP. This work was supported by the Hertie Foundation; the Fortune Grant, University of Tuebingen, and the DFG DI 1497/1-1 grants (all granted to Simone Di Giovanni).

Materials

Reagent Company Catalogue number
10x ChIP Buffer Cell Signaling 7008
2x ChIP Elution Buffer Cell Signaling 7009
ChIP Grade Protein G Magnetic Beads Cell Signaling 9006
Magna Grip Rack (8 well) Millipore 20-400
Chloroform MERCK UN 1888
37% Formaldehyde ROTH CP10.1
10x Glycine Solution Cell Signaling 7005
Glycogen Sigma G1767
10x HBSS Gibco 14185
Histone H3 antibody (rabbit) Cell Signaling 2650
Normal Rabbit IgG Cell Signaling 2729
Phenol/Chloroform/Isoamyl Alcohol ROTH A156.1
Protease Inhibitors Cocktail Tablets Roche 04 693 116 001
Proteinase K (20 mg/ml) Cell Signaling 10012
SDS Lysis Buffer Upstate 20-163
Equipment needed
Sonicator
Micropestle
Microcentrifuge
Thermomixer

References

  1. Beirowski, B. Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice. Journal of Neuroscience Methods. 134, 23-35 (2004).
  2. Carey, M. F. . Chromatin immunoprecipitation (ChIP). , (2009).
  3. Dahl, J. A. A rapid micro chromatin immunoprecipitation assay (μChIP. Nat. Protoc. 3, 1032-1045 (2008).
  4. Haring, M. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 11, 3-11 (2007).
  5. Jiang, Y. Isolation of neuronal chromatin from brain tissue. BMC Neurosci. 9, 42-42 (2008).
  6. Lee, A. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 8, 723-729 (2005).
  7. Makwana, . Molecular mechanisms in successful peripheral regeneration. Febs J. 272, 2628-2638 (2005).
  8. Tedeschi, A. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death and Differentiation. 16, 543-554 (2009).
  9. Teng, F. Y. Axonal regeneration in adult CNS neurons–signaling molecules and pathways. J Neurochem. 96, 1501-1508 (2006).
check_url/kr/2803?article_type=t

Play Video

Cite This Article
Floriddia, E., Nguyen, T., Di Giovanni, S. Chromatin Immunoprecipitation from Dorsal Root Ganglia Tissue following Axonal Injury. J. Vis. Exp. (53), e2803, doi:10.3791/2803 (2011).

View Video