Summary

Dois tipos de ensaios para detecção de quimiotaxia Sapo Sperm

Published: December 27, 2011
doi:

Summary

Ovos e os revestimentos extracelular em torno de ovos com freqüência liberação de peptídeos, proteínas e pequenas moléculas que se comunicam com o esperma para guiá-los até o óvulo, promovendo assim a fecundação. Usando o esperma de rã que descrever e comparar duas classes de testes usados ​​para detectar quimiotaxia esperma – ensaios de esperma acumulação e ensaios de monitoramento de esperma.

Abstract

Quimiotaxia de esperma em invertebrados podem ser suficientemente robusto que um pode colocar uma pipeta contendo o peptídeo atraente em uma suspensão de espermatozóides e microscopicamente visualizar acúmulo de esperma em torno da pipeta 1. Quimiotaxia esperma em vertebrados, como sapos, roedores e seres humanos é mais difícil de detectar e exige ensaios quantitativos. Tais ensaios são de dois tipos principais – os ensaios que quantificar o movimento de esperma a uma fonte de chemoattractant, os chamados ensaios de acumulação de esperma, e os ensaios que realmente controlar as trajetórias de natação do esperma individual.

Ensaios de acumulação de espermatozóides são relativamente rápida permitindo dezenas ou centenas de testes a ser feito em um único dia, permitindo assim que as curvas de dose-resposta e cursos tempo para ser realizada de forma relativamente rápida. Estes tipos de ensaios têm sido amplamente utilizado para caracterizar muitos sistemas quimiotaxia bem estabelecida – por exemplo, quimiotaxia de neutrófilos para bacpeptídeos terial e quimiotaxia esperma para fluido folicular. Ensaios de monitoramento de esperma pode ser mais trabalhoso, mas oferecer dados adicionais sobre como chemoattractancts realmente alterar os caminhos que o esperma nadar tomar. Este tipo de ensaio é necessário para demonstrar a orientação do movimento de esperma em relação ao eixo gradiente chemoattrractant e visualizar curvas características ou mudanças de orientação que trazem os espermatozóides mais próximos do ovo.

Aqui descrevemos os métodos utilizados para cada um desses dois tipos de ensaios. O ensaio de acumulação de esperma utilizado é chamado de "duas câmaras" ensaio. Espermatozóides dos anfíbios são colocados em uma inserção de placa de cultura de tecidos com um piso de filtro de policarbonato com poros de diâmetro 12 mM. Pastilhas com os espermatozóides são colocados em poços de cultura de tecidos placa contendo tampão e um chemoatttractant cuidadosamente pipetado para o fundo poço onde o piso encontra a parede (ver Fig. 1.). Após a incubação, a inserção superior contendo o reservatório de esperma é cuidadosamente removed, esperma e na câmara de fundo que passaram através da membrana são removidos, peletizada e depois contadas por hemocitômetro ou citômetro de fluxo.

O ensaio de rastreamento de esperma utiliza uma câmara de Zigmond originalmente desenvolvido para a observação de quimiotaxia de neutrófilos e modificados para a observação de espermatozóides por Giojalas e colegas de trabalho 2,3. A câmara consiste de uma lâmina de vidro de espessura em que duas calhas verticais foram usinadas. Estes são separados por uma uma plataforma de observação mm de largura. Após a aplicação de um espermatozóide tampa de vidro, são carregados em uma calha, o agente chemoattractant para o outro eo movimento dos espermatozóides individuais visualizados por microscopia de vídeo. Imagens de vídeo são então analisados ​​usando o software para identificar os movimentos em duas dimensões de células no plano xy como uma função do tempo (conjuntos XYT de dados) que formam a trajetória de cada espermatozóide.

Protocol

1. Materiais e buffers usados Tampão de Ringer oócito (1,5 x OR2) contém 124 mM NaCl, 3,75 mM KCl, 1,5 mM CaCl 2, 1,5 mM MgCl 2, 1,5 mM Na 2 HPO 4, 10 mM Hepes, pH 7,8. Tampão de fertilização (F-1) contém 41,25 mM NaCl, 1,25 mM KCl, 0,25 mM CaCl 2, 0,06 mM MgCl 2, 0,5 mM Na 2 HPO 4, 2,5 mM Hepes, pH 7.8. Xenopus laevis água ovo é preparado de acordo com Sugiyama et al. 4….

Discussion

Quimiotaxia de células de movimento pelo movimento amebóide ou flagelos-powered natação é encontrado em muitos contextos biológicos e estudo deste fenômeno exige a disponibilidade de testes prático e confiável. Alguns exemplos do fenômeno, como a atração de esperma para um ovo de ouriço do mar ou coleta de células do discoideum para formar um corpo de frutificação, têm um impacto visual imediato. Quantificação deste fenômeno tem sido feita em uma variedade de maneiras, como descrito por Eisenbach <su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Agradecemos ao WM Keck Laboratory BioImaging para uso de sua estação de trabalho de vídeo microscopia. Este estudo foi financiado pela NSF conceder IBN-0615435.

Materials

Name of Item Company Catalogue Number Comments
24-well plates Becton-Dickenson 35/1147  
12 mm outer diameter inserts with 12 μm pore membrane Millipore PIXP01250 We previously used Costar-Corning transwell plate #3403 -now discontinued
Zigmond chamber Neuroprobe Z02  
Silicone oil General Electric SF1154 Equivalent to Dow Corning 550 Fluid
Image J software Wayne Rasband, Research Services Branch, National Institute of Mental Health Free download at
http://rsbweb.nih.gov/ij
Java program that runs on Windows, Linux and Mac
MtrackJ software Erik Meijering/
Imagescience/
Biomedical Imaging Group, Erasmus MC – University Medical Center Rotterdam
Free download at http://www.imagescience.org/meijering/software/mtrackj/ Java program that runs on Windows, Linux and Mac
Virtual Dub software GNU General Public Licensed software Free download via http://www.virtualdub.org/index.html Setup instructions at the Image J website under plugins; for Windows only
cellSens software Olympus See website: http://www.olympusamerica.com/seg_section/product.asp?product=1070 Controls and acquires images from a variety of cameras. Also has image processing capability

References

  1. Ward, G. E., Brokaw, C. J., Garbers, D. L., Vacquier, V. D. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101, 2324-2329 (1985).
  2. Olivera, R. G., Tomasi, L., Rovasio, R. A., Giojalas, L. C. Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J. Reprod. Fertil. 115, 23-27 (1999).
  3. Fabro, G., Rovasio, R. A., Civalero, S., Frenkel, A., Caplan, S. R., Eisenbach, M., Giojalas, L. C. Chemotaxis of capacitated rabbit spermatozoa to follicular fluid revealed by a novel directionality-based assay. Biol. Reprod. 67, 1565-1571 (2002).
  4. Sugiyama, H., Burnett, L., Xiang, X., Olson, J., Willis, S., Miao, A., Akema, T., Bieber, A. L., Chandler, D. E. Purification and multimer formation of allurin, a sperm chemoattractant from Xenopus laevis egg jelly. Mol. Reprod. Dev. 76, 527-536 (2009).
  5. Al-Anzi, B., Chandler, D. Xenopus laevis egg jelly releases a sperm chemoattractant during spawning. Dev. Biol. 198, 366-375 (1998).
  6. Ralt, D., Goldenberg, M., Fetterolf, P., Thompson, D., Dor, J., Mashiach, S., Garbers, D. L., Eisenbach, M. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc. Natl. Acad. Sci. U.S.A. 88, 2840-2844 (1991).
  7. Gakamsky, A., Schechtman, E., Caplan, S. R., Eisenbach, M. Analysis of chemotaxis when the fraction of responsive cells is small–application to mammalian sperm guidance. Int. J. Dev. Biol. 52, 481-487 (2008).
  8. Böhmer, M., Van, Q., Weyand, I., Hagen, V., Beyermann, M., Matsumoto, M., Hoshi, M., Hildebrand, E., Kaupp, U. B. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741-2752 (2005).
  9. Shiba, K., Baba, S. A., Inoue, T., Yoshida, M. Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc. Natl. Acad. Sci. U.S.A. 105, 19312-19317 (2008).
  10. Burnett, L. A., Sugiyama, H., Bieber, A. L., Chandler, D. E. Egg jelly proteins stimulate directed motility in Xenopus laevis sperm. Mol. Reprod. Dev. 78, 450-462 (2011).
  11. Abaigar, T., Barbero, J., Holt, W. V. Trajectory variance and autocorrelations within single sperm tracks as population level descriptors of sperm track complexity, predictability and energy generating ability. J. Androl. , (2011).
  12. Mortimer, S. T., Swan, M. A., Mortimer, D. Fractal analysis of capacitating human spermatozoa. Hum. Reprod. 11, 1049-1054 (1996).
  13. Guerrero, A., Carneiro, J., Pimentel, A., Wood, C. D., Corkidi, G., Darszon, A. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol. Hum. Reprod. 17, 511-523 (2011).
  14. Yoshida, M., Yoshida, K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol. Hum. Reprod. 17, 457-465 (2011).
  15. Spehr, M., Schwane, K., Riffell, J. A., Zimmer, R. K., Hatt, H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm.Mol. Cell. Endocrinol. 250, 128-136 (2006).
  16. Veitinger, T., Riffell, J. R., Veitinger, S., Nascimento, J. M., Triller, A., Chandsawangbhuwana, C., Schwane, K., Geerts, A., Wunder, F., Berns, M. W., Neuhaus, E. M., Zimmer, R. K., Spehr, M., Hatt, H. Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J. Biol. Chem. 286, 17311-17325 (2011).
  17. Tholl, N., Naqvi, S., McLaughlin, E., Boyles, S., Bieber, A. L., Chandler, D. E. Swimming of Xenopus laevis sperm exhibits multiple gears and its duration is extended by egg jelly constituents. Biol. Bull. 220, 174-185 (2011).
  18. Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56-66 (1999).
  19. Riffell, J. A., Zimmer, R. K. Sex and flow: the consequences of fluid shear for sperm-egg interactions. J. Exp. Biol. 210, 3644-3660 (2007).
  20. Corkidi, G., Taboada, B., Wood, C. D., Guerrero, A., Darszon, A. Tracking sperm in three-dimensions. Biochem. Biophys. Res. Commun. 373, 125-129 (2008).
  21. Himes, J. E., Riffell, J. A., Zimmer, C. A., Zimmer, R. K. Sperm chemotaxis as revealed with live and synthetic eggs. Biol Bull. 220, 1-5 (2011).
  22. Sun, F., Giojolas, L. C., Rovasio, R. A., Tur-Kaspa, I., Sanchez, R., Eisenbach, M. Lack of species-specificity in mammalian sperm chemotaxis. Dev. Biol. 255, 423-427 (2003).
  23. Guidobaldi, H. A., Teves, M. E., Uñates, D. R., Anastasía, A., Giojalas, L. C. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One. 3, e3040-e3040 (2008).
  24. Oren-Benaroya, R., Orvieto, R., Gakamsky, A., Pinchasov, M., Eisenbach, M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 23, 2339-2345 (2008).
  25. Teves, M. E., Guidobaldi, H. A., Uñates, D. R., Sanchez, R., Miska, W., Publicover, S. J., Morales Garcia, A. A., Giojalas, L. C. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One. 4, 8211-82 (2009).
  26. Blengini, C. S., Teves, M. E., Uñates, D. R., Guidobaldi, H. A., Gatica, L. V., Giojalas, L. C. Human sperm pattern of movement during chemotactic re-orientation towards a progesterone source. Asian J. Androl. 13, 769-773 (2011).
  27. Strünker, T., Goodwin, N., Brenker, C., Kashikar, N. D., Weyand, I., Seifert, R., Kaupp, U. B. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 471, 382-386 (2011).
  28. Lishko, P. V., Botchkina, I. L., Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature. 471, 387-391 (2011).
  29. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453-465 (1962).
  30. Zigmond, S. H., Lauffenburger, D. A. Assays of leukocyte chemotaxis. Annu. Rev. Med. 37, 149-155 (1986).
  31. Villanueva-Diaz, C., Vadillo-Ortega, F., Kably-Ambe, A., Diaz-Pérez, M. A., Krivitzky, S. K. Evidence that human follicular fluid contains a chemoattractant for spermatozoa. Fertil. Steril. 54, 1180-1182 (1990).
  32. Villanueva-Diaz, C., Arizs-Martinez, J., Bermejo-Martinez, L., Vadillo-Ortega, F. Progesterone induces human sperm chemotaxis. Fertil. Steril. 64, 1183-1188 (1995).
  33. Olson, J., Xiang, X., Ziegert, T., Kittleson, A., Rawls, A., Bieber, A., Chandler, D. E. A. l. l. u. r. i. n. a 21 kD sperm chemoattractant from Xenopus egg jelly, is homologous to mammalian sperm-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 11205-11210 (2001).
check_url/kr/3407?article_type=t

Play Video

Cite This Article
Burnett, L. A., Tholl, N., Chandler, D. E. Two Types of Assays for Detecting Frog Sperm Chemoattraction. J. Vis. Exp. (58), e3407, doi:10.3791/3407 (2011).

View Video