Summary

Analyse de la migration des crêtes neurales et la différenciation par la Croix-espèces transplantation

Published: February 07, 2012
doi:

Summary

Une approche pour l'analyse des migrations et le destin éventuel de cellules aviaires de la crête neurale chez la caille-poulet embryons chimériques est décrite. Cette méthode est une technique simple et directe pour le traçage des cellules de la crête neurale au cours de la migration et la différenciation qui seraient autrement difficiles à distinguer au sein d'un embryon de poulet non manipulée.

Abstract

Embryons aviaires fournir une plate-forme unique pour l'étude de nombreux vertébrés processus de développement, en raison de la facilité d'accès des embryons dans l'œuf. Chimériques embryons aviaires, dans lequel le tissu des bailleurs de fonds de caille est transplanté dans un embryon de poulet in ovo, combiner la puissance de l'étiquetage génétique indélébile de populations de cellules avec la facilité de manipulation présenté par l'embryon aviaire.

Quail-chiches chimères sont un outil classique pour tracer migratoires des cellules de la crête neurale (CCN) 1-3. CCN sont une population de passage migratoire des cellules dans l'embryon, qui sont originaires de la région dorsale de la 4 du tube neural en développement. Ils subissent une transition épithélio-mésenchymateuse et migrent vers d'autres régions de l'embryon, où ils se différencient en différents types cellulaires, y compris le cartilage 5-13, 11,14-20 mélanocytes, les neurones et cellules gliales 21-32. CCN sont multipotentes, et leur sort ultime est influencéeexpérimentés par 1) la région du tube neural dont ils sont issus le long de l'axe rostro-caudale de l'embryon 11,33-37, 2) des signaux provenant des cellules voisines de leur migration 38-44, et 3) le micro-ultime de leur destination à l'intérieur de l'embryon 45,46. Suivre ces cellules à partir de leur point d'origine à du tube neural, à leur position finale et le sort au sein de l'embryon, donne un aperçu important dans les processus de développement qui régulent structuration et de l'organogenèse.

Transplantation des régions complémentaires du tube neural des bailleurs de fonds (homotopes greffage) ou différentes régions du tube neural des bailleurs de fonds (hétérotopique greffage) peut révéler des différences dans pré-spécification de CCN le long de l'axe rostro-caudal 2,47. Cette technique peut être en outre adapté pour transplanter un compartiment unilatérale du tube neural, de telle sorte que d'un côté est dérivé du tissu du donneur, et les restes côté controlatéral imperturbable dans l'embryon d'accueil, yiElding un contrôle interne au sein du même échantillon 2,47. Il peut également être adapté pour la transplantation de segments du cerveau chez les embryons plus tard, après HH10, lorsque le tube neural antérieur a fermé 47.

Nous rapportons ici les techniques pour générer des cailles-chiches chimères par transplantation du tube neural, qui permettent de tracer des CNC migratoires provenant d'un segment distinct du tube neural. Spécifique à l'espèce marquage des cellules dérivées des bailleurs de fonds avec l'anticorps spécifique à la caille QCPN 48-56 permet au chercheur de distinguer des donateurs et des cellules hôtes au point de fin d'expérimentation. Cette technique est simple, peu coûteux, et a de nombreuses applications, y compris le sort de cartographie, la lignée cellulaire de traçage et l'identification des pré-patterning événements le long de l'axe rostro-caudal 45. En raison de la facilité d'accès à l'embryon aviaire, la technique de greffe caille-poussin peut être combiné avec d'autres manipulations, y compris mais non limité à 4 ablation lentille0, l'injection de molécules inhibitrices 57,58, ou la manipulation génétique par électroporation de plasmides d'expression 59-61, afin d'identifier la réponse de certains flux migratoires de CCN à des perturbations dans le programme de développement de l'embryon. En outre, cette technique de greffage peut aussi être utilisé pour générer d'autres embryons interspécifiques chimériques tels que la caille-canard chimères d'étudier la contribution de la CCN à la morphogenèse cranio-faciale, ou la souris-chiches chimères de combiner la puissance de la génétique de la souris avec la facilité de manipulation de l'embryon aviaire 62.

Protocol

1. Incuber poussin et oeufs de caille à l'étape désirée Pour HH9 embryons, les durées d'incubation typiques vont de 29-33 heures à 38 ° C. 63 Laver les débris sur les oeufs avec l'eau tiède. Disposer des œufs de poule sur le plateau horizontalement. Marquer le côté orienté vers le haut avec le crayon; ce correspond à la région où l'embryon est localisé. Incuber oeufs de caille extrémité émoussée vers le haut. Lieu…

Discussion

Le greffage du tube neural de caille dans des embryons de poulet d'accueil décrit ici est une technique simple et peu coûteuse pour le traçage des sous-populations spécifiques de la migration CCN émanant de différentes régions le long de l'axe rostro-caudal 21,67-69. Cette technique tire avantage de la facilité d'accès aux embryons d'oiseaux (par rapport aux embryons de mammifères) et peuvent être combinés avec d'autres techniques, telles que l'ablation des tissus, l'in…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier les membres du laboratoire Lwigale pour la critique du manuscrit. SLG est soutenu par une bourse de Ruth L. Kirschstein NRSA du National Eye Institute (F32 EY02167301). PYL est soutenu par le National Eye Institute (EY018050).

Materials

Reagent Company Catalog number
Chick eggs Various – we use Texas A&M University’s Poultry Science Department, TX.  
Quail eggs Various – we use Ozarks Egg Company, MO.  
Egg incubator (Digital Readout 1502 Sportsman Incubator w/Humidity 110-120 Volt AC) www.poultrysupply.com 1502
Dumont AA forceps, Inox Epoxy-coated Fine Science Tools 11210-10
Scotch tape Any office supply store  
Curved Iris forceps Fine Science Tools 11065-07
India ink Any art supply store  
Pen/Strep (Penicillin, Streptomycin) Solution VWR International 101447-068
Clear Packing tape Any office supply store  
Needle pulling apparatus Narashige, Japan PE-21
Pulled glass needle, made from 1.5-1.8 x 100mm borosilicate glass capillary tube Kimble chase 34500 99
Pulled glass pipette, made from 5¾” Pasteur pipette Fisher Scientific 13-678-6A
Mouth pipette apparatus (aspirator tube assembly for calibrated microcapillary pipette) Sigma-Aldrich A5177-52A
Dumont #5 forceps Fine Science Tools 11251-30
Tungsten wire, 0.1mm diameter VWR International AA10404-H2
Needle holders (Nickel-plated pin holder) Fine Science Tools 26018-17
QCPN antiserum Developmental Studies Hybridoma Bank, University of Iowa QCPN
Alexa Fluor secondary antibody (e.g., Alexa Fluor 594 goat anti-mouse IgG1) Invitrogen A21125
Ringer’s Solution (2L):
  • 14.4g NaCl
  • 0.34g CaCl2
  • 0.74g KCl
  • 0.230g Na2HPO4
  • 0.04g KH2PO4
  • ddH2O to 2L
  • Filter and autoclave
All reagents from Fisher Scientific
  • 7647-14-5
  • 10043-52-4
  • 7447-40-7
  • 7558-79-4
  • 7778-77-0

References

  1. Le Douarin, G., Renaud, D. Morphologic and physiologic study of the differentiation in vitro of quail embryo precardial mesoderm. Bull. Biol. Fr. Belg. 103 (3), 453-468 (1969).
  2. Teillet, M. A., Ziller, C., Le Douarin, N. M. Quail-chick chimeras. Methods. Mol. Biol. 461, 337-350 (2008).
  3. Le Douarin, N. A biological cell labeling technique and its use in expermental embryology. Dev. Biol. 30 (1), 217-222 (1973).
  4. Noden, D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev. Biol. 42 (1), 106-130 (1975).
  5. Johnston, M. C. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat. Rec. 156 (2), 143-155 (1966).
  6. Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev. Biol. 67 (2), 296-312 (1978).
  7. Oka, K. The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. 303 (1), 391-404 (2007).
  8. Chai, Y. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 127 (8), 1671-1679 (2000).
  9. Lengele, B., Schowing, J., Dhem, A. Embryonic origin and fate of chondroid tissue and secondary cartilages in the avian skull. Anat. Rec. 246 (3), 377-393 (1996).
  10. Le Douarin, N. M., Ziller, C., Couly, G. F. Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev. Biol. 159 (1), 24-49 (1993).
  11. Lallier, T. E. Cell lineage and cell migration in the neural crest. Ann. N.Y. Acad. Sci. 615, 158-171 (1991).
  12. Nakamura, H. Mesenchymal derivatives from the neural crest. Arch. Histol. Jpn. 45 (2), 127-138 (1982).
  13. Le Lievre, C. S., Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34 (1), 125-154 (1975).
  14. Rawles, M. E. The Development of Melanophores from Embryonic Mouse Tissues Grown in the Coelom of Chick Embryos. Proc. Natl. Acad. Sci. U.S.A. 26 (12), 673-680 (1940).
  15. Rawles, M. E. The Pigment-Forming Potency of Early Chick Blastoderms. Proc. Natl. Acad. Sci. U.S.A. 26 (1), 86-94 (1940).
  16. Mosher, J. T. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev. Biol. 303 (1), 1-15 (2007).
  17. Dupin, E., Le Douarin, N. M. Development of melanocyte precursors from the vertebrate neural crest. Oncogene. 22 (20), 3016-3023 (2003).
  18. Faraco, C. D., Vaz, S. A., Pastor, M. V., Erickson, C. A. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev. Dyn. 220 (3), 212-225 (2001).
  19. Selleck, M. A., Bronner-Fraser, M. Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. Int. J. Dev. Neurosci. 18 (7), 621-627 (2000).
  20. Stocker, K. M., Sherman, L., Rees, S., Ciment, G. Basic FGF and TGF-beta 1 influence commitment to melanogenesis in neural crest-derived cells of avian embryos. Development. 111 (2), 635-645 (1991).
  21. Le Douarin, N. M., Teillet, M. A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev. Biol. 41 (1), 162-184 (1974).
  22. Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues. Dev. Biol. 67 (2), 313-329 (1978).
  23. Barraud, P. Neural crest origin of olfactory ensheathing glia. Proc. Natl. Acad. Sci. U.S.A. 107 (49), 21040-21045 (2010).
  24. Li, H. Y., Say, E. H., Zhou, X. F. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells. 25 (8), 2053-2065 (2007).
  25. Carney, T. J. A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development. 133 (23), 4619-4630 (2006).
  26. Maro, G. S. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7 (9), 930-938 (2004).
  27. Bronner-Fraser, M. Molecular analysis of neural crest formation. J. Physiol. Paris. 96 (1-2), 3-8 (2002).
  28. Paratore, C., Goerich, D. E., Suter, U., Wegner, M., Sommer, L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 128 (20), 3949-3961 (2001).
  29. Britsch, S. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15 (1), 66-78 (2001).
  30. Bronner-Fraser, M. Origin of the avian neural crest. Stem Cells. 13 (6), 640-646 (1995).
  31. Jessen, K. R., Mirsky, R. Neural development. Fate diverted. Curr. Biol. 4 (9), 824-827 (1994).
  32. Le Douarin, N., Dulac, C., Dupin, E., Cameron-Curry, P. Glial cell lineages in the neural crest. Glia. 4 (2), 175-184 (1991).
  33. Chan, W. Y., Cheung, C. S., Yung, K. M., Copp, A. J. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development. 131 (14), 3367-3379 (2004).
  34. Bronner-Fraser, M. Segregation of cell lineage in the neural crest. Curr. Opin. Genet. Dev. 3 (4), 641-647 (1993).
  35. Peters-vander Sanden, M. J., Luider, T. M., vander Kamp, A. W., Tibboel, D., Meijers, C. Regional differences between various axial segments of the avian neural crest regarding the formation of enteric ganglia. Differentiation. 53 (1), 17-24 (1993).
  36. Kuratani, S., Bockman, D. E. Capacity of neural crest cells from various axial levels to participate in thymic development. Cell Tissue Res. 263 (1), 99-105 (1991).
  37. Leblanc, G. G., Epstein, M. L., Bronner-Fraser, M. E. Differential development of cholinergic neurons from cranial and trunk neural crest cells in vitro. 137 (2), 318-330 (1990).
  38. Golding, J. P., Trainor, P., Krumlauf, R., Gassmann, M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat. Cell. Biol. 2 (2), 103-109 (2000).
  39. Kulesa, P. M., Bailey, C. M., Kasemeier-Kulesa, J. C., McLennan, R. Cranial neural crest migration: new rules for an old road. Dev. Biol. 344 (2), 543-554 (2009).
  40. Lwigale, P. Y., Bronner-Fraser, M. Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. Dev. Biol. 336 (2), 257-265 (2009).
  41. Killian, O. l. e. s. n. i. c. k. y., Birkholz, E. C., A, D., Artinger, K. B. A role for chemokine signaling in neural crest cell migration and craniofacial. Dev. Biol. 333 (1), 161-172 (2009).
  42. Gammill, L. S., Gonzalez, C., Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev. Neurobiol. 67 (1), 47-56 (2007).
  43. Osborne, N. J., Begbie, J., Chilton, J. K., Schmidt, H., Eickholt, B. J. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev. Dyn. 232 (4), 939-949 (2005).
  44. Kanzler, B., Foreman, R. K., Labosky, P. A., Mallo, M. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development. 127 (5), 1095-1104 (2000).
  45. Garcia-Lopez, R., Pombero, A., Martinez, S. Fate map of the chick embryo neural tube. Dev. Growth Differ. 51 (3), 145-165 (2009).
  46. Goldstein, A. M., Nagy, N. A bird’s eye view of enteric nervous system development: lessons from the avian embryo. Pediatr. Res. 64 (4), 326-333 (2008).
  47. Le Douarin, N., Dieterlen-Lievre, F., Creuzet, S., Teillet, M. A. Quail-chick transplantations. Methods Cell. Biol. 87, 19-58 (2008).
  48. Wingate, R. J., Lumsden, A. Persistence of rhombomeric organisation in the postsegmental hindbrain. Development. 122 (7), 2143-2152 (1996).
  49. Karagenc, L., Sandikci, M. Tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. J. Anat. 216 (1), 16-22 (2010).
  50. Teague, W. J., Jayanthi, N. V., Lear, P. V., Johnson, P. R. Foregut mesenchyme contributes cells to pancreatic acini during embryonic development in a chick-quail chimera model. Pediatr. Surg. Int. 21 (3), 138-142 (2005).
  51. Borue, X., Noden, D. M. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development. 131 (16), 3967-3980 (2004).
  52. He, L. Three different fates of cells migrating from somites into the limb bud. Anat. Embryol. (Berl). 207 (1), 29-34 (2003).
  53. Huang, R., Zhi, Q., Christ, B. The relationship between limb muscle and endothelial cells migrating from single somite. Anat. Embryol. (Berl). 206 (4), 283-289 (2003).
  54. Hidalgo-Sanchez, M., Simeone, A., Alvarado-Mallart, R. M. Fgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon. Development. 126 (14), 3191-3203 (1999).
  55. Verberne, M. E., Gittenberger-de Groot, A. C., Poelmann, R. E. Lineage and development of the parasympathetic nervous system of the embryonic chick heart. Anat. Embryol. (Berl). 198 (3), 171-184 (1998).
  56. Burns, A. J., Douarin, N. M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 125 (21), 4335-4347 (1998).
  57. Debby-Brafman, A., Burstyn-Cohen, T., Klar, A., Kalcheim, C. F-Spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration. Neuron. 22 (3), 475-488 (1999).
  58. Lwigale, P. Y., Bronner-Fraser, M. Lens-derived Semaphorin3A regulates sensory innervation of the cornea. Dev. Biol. 306 (2), 750-759 (2007).
  59. Nakamura, H., Funahashi, J. Introduction of DNA into chick embryos by in ovo electroporation. Methods. 24 (1), 43-48 (2001).
  60. Chen, Y. X., Krull, C. E., Reneker, L. W. Targeted gene expression in the chicken eye by in ovo electroporation. Mol. Vis. 10, 874-883 (2004).
  61. Sato, F., Nakagawa, T., Ito, M., Kitagawa, Y., Hattori, M. A. Application of RNA interference to chicken embryos using small interfering RNA. J. Exp. Zool. A. Comp. Exp. Biol. 301 (10), 820-827 (2004).
  62. Lwigale, P. Y., Schneider, R. A. Other chimeras: quail-duck and mouse-chick. Methods Cell. Biol. 87, 59-74 (2008).
  63. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 195 (4), 231-272 (1992).
  64. Brady, J. A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull. World Health Organ. 32 (1), 143-144 (1965).
  65. Le Douarin, N. M. A Feulgen-positive nucleolus. Exp. Cell. Res. 77 (1), 459-468 (1973).
  66. Feulgen, R., Rossenbeck, H. Mikroskopisch-chemischer Nachweis einer Nucleinsaure vom typus der Thymonucleinsiiure und die darauf beruhende elektive Faibung von Zellkemen in mikroskopischen Praparaten. Hoppe-Seyler’s Z. Physiol. Chem. 135, 203-252 (1924).
  67. Lwigale, P. Y., Conrad, G. W., Bronner-Fraser, M. Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis. Development. 131 (9), 1979-1991 (2004).
  68. Weston, J. A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 6, 279-310 (1963).
  69. Le Douarin, N. M., Kalcheim, C. . The Neural Crest. , (2009).
  70. Le Douarin, N. M., Teillet, M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30 (1), 31-48 (1973).
  71. Douarin, N. M. L. e., Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142 (1), 17-40 (1975).
  72. Le Douarin, N. M., Renaud, D., Teillet, M. A., Le Douarin, G. H. Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations. Proc. Natl. Acad. Sci. U. S. A. 72 (2), 728-732 (1975).
  73. Houssaint, E., Belo, M., Le Douarin, N. M. Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras. Dev. Biol. 53 (2), 250-264 (1976).
  74. Le Douarin, N. M., Jotereau, F. V., Houssaint, E., Belo, M. Ontogeny of the avian thymus and bursa of Fabricius studied in interspecific chimeras. Ann. Immunol. (Paris). 127 (6), 849-856 (1976).
  75. Fontaine, J., Le Douarin, N. M. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J. Embryol. Exp. Morphol. 41, 209-222 (1977).
  76. Narayanan, C. H., Narayanan, Y. On the origin of the ciliary ganglion in birds studied by the method of interspecific transplantation of embryonic brain regions between quail and chick. J. Embryol. Exp. Morphol. 47, 137-148 (1978).
  77. Lwigale, P. Y., Cressy, P. A., Bronner-Fraser, M. Corneal keratocytes retain neural crest progenitor cell properties. Dev. Biol. 288 (1), 284-293 (2005).
  78. Lwigale, P. Y. Embryonic origin of avian corneal sensory nerves. Dev. Biol. 239 (2), 323-337 (2001).
  79. Tanaka, H., Kinutani, M., Agata, A., Takashima, Y., Obata, K. Pathfinding during spinal tract formation in the chick-quail chimera analysed by species-specific monoclonal antibodies. Development. 110 (2), 565-571 (1990).

Play Video

Cite This Article
Griswold, S. L., Lwigale, P. Y. Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation. J. Vis. Exp. (60), e3622, doi:10.3791/3622 (2012).

View Video