Summary

İnsan internal meme arter (İMA) Transplantasyon ve Stent: In-Stent Restenozis Geliştirme Eğitim Bir İnsan Modeli

Published: May 09, 2012
doi:

Summary

This video shows a model to study the development of intimal hyperplasia after stent deployment using a human vessel (IMA) in an immunodeficient rat model.

Abstract

Preclinical in vivo research models to investigate pathobiological and pathophysiological processes in the development of intimal hyperplasia after vessel stenting are crucial for translational approaches1,2.

The commonly used animal models include mice, rats, rabbits, and pigs3-5. However, the translation of these models into clinical settings remains difficult, since those biological processes are already studied in animal vessels but never performed before in human research models6,7. In this video we demonstrate a new humanized model to overcome this translational gap. The shown procedure is reproducible, easy, and fast to perform and is suitable to study the development of intimal hyperplasia and the applicability of diverse stents.

This video shows how to perform the stent technique in human vessels followed by transplantation into immunodeficient rats, and identifies the origin of proliferating cells as human.

Protocol

1. Internal Mammary Artery (IMA) Preparation The arterial endothelium is denuded by the passage of a 2-french Fogarty arterial embolectomy catheter (Baxter Healthcare, Deerfield, IL, USA). The catheter is pulled through the whole vessel length twice to ensure endothelial damage. Use any human stent of 8mm length and 2.5 mm-3 mm in diameter (e.g. Translumina, Yukon stent). CAUTION: The diameter of the stent should not exceed the vessel diameter by more than 10% to avoid pre- and post-stent stenosis. …

Discussion

Although different in vivo research models are existing to investigate the development of intimal hyperplasia after stent placement, these models still facing translational hurdles to overcome. Furthermore, large animal models are expensive and special housing conditions as well as surgical equipment is not available for all laboratories.

Using a human IMA to study the development of human intimal proliferation and in-stent restenosis was studied before ex situ in organ …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Christiane Pahrmann for her contribution. Special thanks to Ethicon, Norderstedt, Hamburg (Germany) for providing the suture material.

Funding

Sonja Schrepfer has received a research grant from the Deutsche Forschungsgemeinschaft (DFG) (SCHR992/3 1 and SCHR992/4-1).] The work was supported by the ISHLT Shumway Career Development Grant 2010 and the Falk Research Funding (Stanford University).

Materials

Name of the reagent Company Catalog number Comments
2 French Fogarty catheter Baxter Healthcare, Deerfield, IL, USA 120602F  
Yukon Stent Translumina GmbH, Hechingen, Germany   Use the stent of your choice according to your study protocol
RPMI media Biochrom Nr.F1275  
heparin Baxter 2B0953  
isoflurane Abbot B506  
Provo-Iodine Betadine Puredue Pharma EAN:5995327165830  
80% ethanol Geyer ETV 80/0500  
Micro clamp Harvard Apparatus PY2-61-0186  
Sutures 8-0 Johnson& Johnson, 2808G  
Sutures 6-0 Johnson& Johnson, 1698 H  
Carprofen Feizer Vet PZN:0110208  
Metamizol Ratiopharm    
Target retrieval solution, pH9 Dako S2368  
Image-iT FX signal enhancer Invitrogen I36933  
mouse monoclonal anti-GFP antibody BD living colors 632381  
primary antibody diluent Dako S3022  
goat-anti-mouse IgG, Alexa Fluor 488 Invitrogen A11017  
secondary antibody diluent Dako S0809  
rabbit polycolonal anti-smooth muscle α-actin Abcam, ab5694  
goat-anti-rabbit IgG, Alexa Fluor 555 Invitrogen A21430  
Prolong Gold antifade reagent Invitrogen P36930  

References

  1. Deuse, T., Ikeno, F., Robbins, R. C., Schrepfer, S. Imaging In-Stent Restenosis: An Inexpensive, Reliable, and Rapid Preclinical Model. J. Vis. Exp. (31), e1346 (2009).
  2. Oyamada, S. Trans-iliac rat aorta stenting: a novel high throughput preclinical stent model for restenosis and thrombosis. J. Surg. Res. 166, e91-e95 (2011).
  3. Chamberlain, J. A novel mouse model of in situ stenting. Cardiovascular research. 85, 38-44 (2010).
  4. Deuse, T. Introducing the first polymer-free leflunomide eluting stent. Atherosclerosis. 200, 126-134 (2008).
  5. Finn, A. V. Differential healing after sirolimus, paclitaxel, and bare metal stent placement in combination with peroxisome proliferator-activator receptor gamma agonists: requirement for mTOR/Akt2 in PPARgamma activation. Circulation research. 105, 1003-1012 (2009).
  6. Tellez, A. Coronary bare metal stent implantation in homozygous LDL receptor deficient swine induces a neointimal formation pattern similar to humans. Atherosclerosis. 213, 518-524 (2010).
  7. Suzuki, Y., Yeung, A. C., Ikeno, F. The pre-clinical animal model in the translational research of interventional cardiology. JACC Cardiovasc. Interv. 2, 373-383 (2009).
  8. Holt, C. M. Intimal proliferation in an organ culture of human internal mammary artery. Cardiovascular research. 26, 1189-1194 (1992).
  9. Swanson, N., Javed, Q., Hogrefe, K., Gershlick, A. Human internal mammary artery organ culture model of coronary stenting: a novel investigation of smooth muscle cell response to drug-eluting stents. Clin. Sci. (Lond). 103, 347-353 (2002).
check_url/kr/3663?article_type=t

Play Video

Cite This Article
Hua, X., Deuse, T., Michelakis, E. D., Haromy, A., Tsao, P. S., Maegdefessel, L., Erben, R. G., Bergow, C., Behnisch, B. B., Reichenspurner, H., Robbins, R. C., Schrepfer, S. Human Internal Mammary Artery (IMA) Transplantation and Stenting: A Human Model to Study the Development of In-Stent Restenosis. J. Vis. Exp. (63), e3663, doi:10.3791/3663 (2012).

View Video