Summary

从三维混合细胞球体共培养的乳腺上皮细胞的隔离

Published: April 30, 2012
doi:

Summary

被形容为一个简单的方法,分析相关的上皮细胞组织成纤维细胞的影响。这种方法和三维组织培养相结​​合,可以方便从3D隔离后的细胞分析。该技术适用于不同恶性潜能的细胞,使系统的研究对肿瘤细胞的肿瘤相关基质的影响。

Abstract

虽然已经进入了巨大的努力识别信号通路和分子参与正常细胞和恶性行为1-2,使用传统的二维细胞培养模型,这项工作已完成,允许细胞操纵方便。它已成为明确的细胞内信号通路的影响外的力量,包括维和细胞的表面张力3-4。已采取多种途径,开发三维模型,更准确地反映生物组织架构3。虽然这些模型纳入多维度和建筑讲,由此产生的对细胞影响的研究是比在两维模型的局限性和困难,在随后的分析中提取细胞组织培养的简便。

重要作用,肿瘤周围的微环境在肿瘤发生的行为我之所以成为越来越认识4。肿瘤基质是由多种细胞类型和细胞外分子。在肿瘤的发展有肿瘤细胞和基质细胞之间的双向信号。虽然参与肿瘤基质协同进化的一些因素已经确定,仍然有必要制定简单的技术,系统地识别和研究这些信号6阵列。成纤维细胞是最丰富的细胞类型,在正常或肿瘤相关间质组织,促进基底膜和旁分泌生长因子7的沉积和维护。

许多团体已经使用三维培养系统研究成纤维细胞的各种细胞功能的作用,包括肿瘤反应治疗,免疫细胞招聘,信号分子,细胞增殖,凋亡,血管生成,侵袭8-15。我们已经优化了屁股的简单方法对乳腺上皮细胞,使用市售的细胞外基质的模型来创建三维混合细胞群(联合培养)16-22文化essing乳腺成纤维细胞的影响。续共培养细胞的形成与球体内部的聚类成纤维细胞和上皮细胞很大程度上取决于外部的球体,形成多细胞的预测,到矩阵。操纵改变上皮细胞的侵袭,导致成纤维细胞可以很容易量化的数量和长度23上皮预测的变化。此外,我们已经制定为隔离上皮细胞三维共培养,促进成纤维细胞的对上皮行为暴露的影响分析的方法。我们已经找到了合作文化的影响,持续数周后上皮细胞的分离,允许充裕的时间来执行多个检测。这种方法是适应细胞不同恶性潜能,不需要专门的设备。这种技术允许多个条件下,在体外细胞模型的快速评估和相应的结果,可以动物体内组织模型以及人体组织样本。

Protocol

1。建立三维共培养建立联合培养的前一天,从4℃冰箱中冷冻和解冻冰基底膜一夜之间。 在当天的实验,准备共同的文化,它对应的上皮细胞,可用于介质(在这个例子中的三菱电梯中等介质:DME/F12介质与10%小牛血清,5微克/毫升胰岛素1微克/毫升氢化可的松,1毫微克/毫升表皮生长因子)。保持冰至少1小时前与基底膜混合介质。 冲淡了解冻的基底膜,确定总的基底膜所需…

Discussion

这里介绍的方法代表着一个简单的方法分析,包括肿瘤细胞的上皮细胞间质成纤维细胞的影响。它允许直接的细胞内细胞外基底膜基质的三维背景的互动,作进一步的分析,同时使基质细胞容易提取。这可以应用于研究肿瘤相关基质,成纤维细胞系可以被操纵,影响信号通路的选择和上皮线,可以在不同的侵入性的潜力,如在图1所示。三维共培养模型,使细胞侵袭的变化已经引起视?…

Disclosures

The authors have nothing to disclose.

Materials

Name of reagent Company Catalogue number Comments
BD Matrigel BD Biosciences 356237 Phenol-red free
Hyclone Classical Liquid Medium: DMEM F12 ThermoScientific SH30023.01  
Hyclone Bovine Calf Serum ThermoScientific SH3007303  
Insulin EMD Chemicals 407709 Dissolve in 0.005N HCl; 0.22 μM filter
Hydrocortisone Sigma-Aldrich H4001 Dissolve in 50% EtOH; 0.22 μM filter
EGF Sigma-Aldrich E9644 Dissolve in 10mM acetic acid; 0.22 μM filter

References

  1. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 100, 57-70 (2000).
  2. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646-674 (2011).
  3. Kim, J. B. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15, 365-377 (2005).
  4. Li, H., Fan, X., Houghton, J. Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell Biochem. 101, 805-815 (2007).
  5. Tse, J. C., Kalluri, R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J. Cell Biochem. 101, 816-829 (2007).
  6. Bhowmick, N. A. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 303, 848-851 (2004).
  7. Bhowmick, N. A., Moses, H. L. Tumor-stroma interactions. Curr. Opin. Genet. Dev. 15, 97-101 (2005).
  8. Havlickova, B., Biro, T., Mescalchin, A., Arenberger, P., Paus, R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. Br. J. Dermatol. 151, 753-765 (2004).
  9. Kilani, R. T. Selective cytotoxicity of gemcitabine in bladder cancer cell lines. Anticancer Drugs. 13, 557-566 (2002).
  10. Seidl, P., Huettinger, R., Knuechel, R., Kunz-Schughart, L. A. Three-dimensional fibroblast-tumor cell interaction causes downregulation of RACK1 mRNA expression in breast cancer cells in vitro. Int. J. Cancer. 102, 129-136 (2002).
  11. Silzle, T. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur. J. Immunol. 33, 1311-1320 (2003).
  12. Bartling, B., Demling, N., Silber, R. E., Simm, A. Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by the receptor for advanced glycation end-products. Am. J. Respir. Cell Mol. Biol. 34, 83-91 (2006).
  13. Kunz-Schughart, L. A. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 290, C1385-C1398 (2006).
  14. Liu, T., Lin, B., Qin, J. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip. 10, 1671-1677 (2010).
  15. Zengel, P. Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis. BMC Cancer. 10, 92-92 (2010).
  16. Kunz-Schughart, L. A., Heyder, P., Schroeder, J., Knuechel, R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp. Cell Res. 266, 74-86 (2001).
  17. Djordjevic, B., Lange, C. S. Cell-cell interactions in spheroids maintained in suspension. Acta Oncol. 45, 412-420 (2006).
  18. Hirschhaeuser, F. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3-15 (2010).
  19. Hoevel, T., Macek, R., Swisshelm, K., Kubbies, M. Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int. J. Cancer. 108, 374-383 (2004).
  20. Paduch, R., Kandefer-Szerszen, M. Vitamin D, tamoxifen and beta-estradiol modulate breast cancer cell growth and interleukin-6 and metalloproteinase-2 production in three-dimensional co-cultures of tumor cell spheroids with endothelium. Cell. Biol. Toxicol. 21, 247-256 (2005).
  21. Timmins, N. E., Nielsen, L. K. Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol. Med. 140, 141-151 (2007).
  22. Foty, R. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids. J. Vis. Exp. (51), e2720-e2720 (2011).
  23. Xu, K. The role of fibroblast Tiam1 in tumor cell invasion and metastasis. Oncogene. 29, 6533-6542 (2010).
check_url/kr/3760?article_type=t

Play Video

Cite This Article
Xu, K., Buchsbaum, R. J. Isolation of Mammary Epithelial Cells from Three-dimensional Mixed-cell Spheroid Co-culture. J. Vis. Exp. (62), e3760, doi:10.3791/3760 (2012).

View Video