Summary

Single Cell Measurement of Dopamine Release with Simultaneous Voltage-clamp and Amperometry

Published: November 21, 2012
doi:

Summary

The amperometric technique measures dopamine release from a single cell by detecting the oxidative current produced by spontaneous dopamine oxidization. Simultaneous voltage clamp and amperometry methodology reveal the mechanistic relationship between the overall “activity” of dopamine transporter and the regulatory role of this activity on the reverse transport of dopamine.

Abstract

After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution.

Protocol

1. Equipment and Supplies Mount a Faraday cage on top of the anti vibration table (TMI) to decrease the background noise. The simultaneous patch clamp amperometry recording system requires an inverted microscope with excellent DIC optics and a long working distance lens. Connect the microscope lighthouse to a car battery. This DC light source for the system will further decrease the electrical noise. Hydraulic micromanipulators (Siskiyou) further decrease noise. In our configuration, we us…

Representative Results

Combined patch clamp with amperometry can measure voltage-dependent DAT-mediated DA efflux. Figure 2A shows a representative experimental configuration and recording of DAT-mediated DA efflux when the intracellular milieu and the membrane potential are clamped by a whole-cell patch pipette. Using this technique, cells expressing YFP-DAT proteins are voltage-clamped with a whole cell patch pipette while an amperometric electrode is placed onto the plasma membrane (Figure 2A). The whole ce…

Discussion

Simultaneous voltage-clamp and amperometry has the following benefits. All cell types are accessible and can be used for recording. The identification of the cells or neuron where the recordings are done is simple and straightforward. In particular, if the cell is fluorescently labeled by adding a fluorescent tag to the protein of interest the experimenter can easily select the target cell or neuron. The experimental configuration allows uniform and controlled delivery of pharmacological agents either via the patch pipet…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Sanika Chirwa for critical review of this manuscript. This work was supported by National Institutes of Health (DA026947, DA021471, and NS071122).

Materials

      Equipment
Anti-vibration table w/faraday cage Technical Manufacturing Corporation 63-500 series we use model 63-543
Inverted microscope Nikon TE-2000 Nikon discontinued now Eclipse Ti
Two low noise amplifiers axopatch 200b Molecular Devices   800-635-5577
1-CV 203 BU headstage Molecular Devices   800-635-5578
1-HL-U pipette holder Molecular Devices   800-635-5579
Digidata 1440A A/D converter Molecular Devices   800-635-5580
Two manipulators Siskyou, left and right handed Siskiyou MX6600R MX6600L 877-313-6418
Laser pipette puller Sutter Instruments P-2000 888-883-0128
Low noise carbon fiber amperometric electrode ProCFE   www.dagan.com
Low noise quartz pipette Sutter Instruments QF100-70-7.5 888-883-0128
12-volt car battery     widely available
Car battery charger     widely available
      Reagent
Sodium chloride (NaCl) Sigma S7653  
HEPES Sigma H3375  
Dextrose Sigma G7528  
Magnesium sulfate (MgSO4) Sigma M2643  
Potassium phosphate monobasic (KH2PO4) Sigma P5655  
Potassium chloride (KCl) Sigma P9333  
Calcium chloride dihydrate (CaCl2•2H20) Sigma 223506  
Magnesium chloride hexahydrate (MgCl2•6H20) Sigma M2670  
EGTA Sigma E0396  

References

  1. Michael, A. C., Ikeda, M., Justice, J. B. Mechanisms contributing to the recovery of striatal releasable dopamine following MFB stimulation. Brain Res. 421, 325-335 (1987).
  2. Gonon, F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17, 5972-5978 (1997).
  3. Sulzer, D., Pothos, E. N. Regulation of quantal size by presynaptic mechanisms. Rev. Neurosci. 11, 159-212 (2000).
  4. Napolitano, A., Cesura, A. M., Da Prada, M. The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J. Neural. Transm. Suppl. 45, 35-45 (1995).
  5. Sulzer, D., Maidment, N. T., Rayport, S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60, 527-535 (1993).
  6. Salahpour, A., et al. Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc. Natl. Acad. Sci. U.S.A. 105, 4405-4410 (2008).
  7. Khoshbouei, H., Wang, H., Lechleiter, J. D., Javitch, J. A., Galli, A. Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J. Biol. Chem. 278, 12070-12077 (2003).
  8. Goodwin, J. S., et al. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in. , 284-2978 (2009).
  9. Kahlig, K. M., et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc. Natl. Acad. Sci. U.S.A. 102, 3495-3500 (2005).
  10. Swant, J., Chirwa, S., Stanwood, G., Khoshbouei, H. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One. 5, e11382 (2010).
  11. Gnegy, M. E., et al. Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol. Pharmacol. 66, 137-143 (2004).

Play Video

Cite This Article
Saha, K., Swant, J., Khoshbouei, H. Single Cell Measurement of Dopamine Release with Simultaneous Voltage-clamp and Amperometry. J. Vis. Exp. (69), e3798, doi:10.3791/3798 (2012).

View Video