Summary

विकासशील और परिपक्व रेटिना न्यूरॉन्स की रूपरेखा एकल कक्ष

Published: April 19, 2012
doi:

Summary

एक रेटिना की कोशिकाओं और उनके cDNAs के बाद प्रवर्धन के अलगाव के लिए एक विधि का वर्णन है. एकल सेल transcriptomics एक ऊतक में सेलुलर विजातिता के वर्तमान की डिग्री से पता चलता है और दुर्लभ सेल आबादी के लिए नया मार्कर जीन uncovers. साथ प्रोटोकॉल के लिए कई अलग अलग प्रकार के सेल के अनुरूप समायोजित किया जा सकता है.

Abstract

Highly specialized, but exceedingly small populations of cells play important roles in many tissues. The identification of cell-type specific markers and gene expression programs for extremely rare cell subsets has been a challenge using standard whole-tissue approaches. Gene expression profiling of individual cells allows for unprecedented access to cell types that comprise only a small percentage of the total tissue1-7. In addition, this technique can be used to examine the gene expression programs that are transiently expressed in small numbers of cells during dynamic developmental transitions8.

This issue of cellular diversity arises repeatedly in the central nervous system (CNS) where neuronal connections can occur between quite diverse cells9. The exact number of distinct cell types is not precisely known, but it has been estimated that there may be as many as 1000 different types in the cortex itself10. The function(s) of complex neural circuits may rely on some of the rare neuronal types and the genes they express. By identifying new markers and helping to molecularly classify different neurons, the single-cell approach is particularly useful in the analysis of cell types in the nervous system. It may also help to elucidate mechanisms of neural development by identifying differentially expressed genes and gene pathways during early stages of neuronal progenitor development.

As a simple, easily accessed tissue with considerable neuronal diversity, the vertebrate retina is an excellent model system for studying the processes of cellular development, neuronal differentiation and neuronal diversification. However, as in other parts of the CNS, this cellular diversity can present a problem for determining the genetic pathways that drive retinal progenitors to adopt a specific cell fate, especially given that rod photoreceptors make up the majority of the total retinal cell population11. Here we report a method for the identification of the transcripts expressed in single retinal cells (Figure 1). The single-cell profiling technique allows for the assessment of the amount of heterogeneity present within different cellular populations of the retina2,4,5,12. In addition, this method has revealed a host of new candidate genes that may play role(s) in the cell fate decision-making processes that occur in subsets of retinal progenitor cells8. With some simple adjustments to the protocol, this technique can be utilized for many different tissues and cell types.

Protocol

1. सेल हदबंदी एक प्रोटोकॉल की रूपरेखा है दिखाया प्रवाह संचित्र चित्रा 1 है. विशेष रूप से इस प्रोटोकॉल भर में इस्तेमाल किया अभिकर्मकों की कुल संख्या के लिए, तालिका 1 के लिए उल्लेख कृपया. एक…

Discussion

अध्ययन की एक कभी विस्तार की संख्या आबादी है कि उनके जीन अभिव्यक्ति 6,8 के संबंध में अधिक सजातीय होना माना गया में मजबूत परिवर्तनशीलता सेल के लिए सेल का खुलासा कर रहे हैं. कम से कम एक उदाहरण में, इस जीन ?…

Disclosures

The authors have nothing to disclose.

Materials

Reaction mixtures:

Cell Lysis buffer

0.45 μ 10X reaction buffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 2 mM MgCl2)
0.23 μl 10% NP-40
0.23 μl 0.1M DTT
0.05 μl RNase Inhibitor (40 U/μl)
0.05 μl SUPERase-In (20U/μl)
0.13 μl Modified Oligo d(T) primer
(TATAGAATTCGCGGCCGCTCGCGATTTTTTTTTTTTTTTTTTTTTTTT)
0.09 μl dNTPs (2.5 mM each)
3.27 μl dH20 (use molecular biology grade for all reaction mixtures)

Tailing Reaction Mixture

0.18 μl 100 mM dATP
0.6 μl 10X reaction buffer(100 mM Tris-HCl pH 8.3, 500 mM KCl, 2 mM MgCl2)
4.62 μl dH2O
0.3 μl TdT (400 U/μl)
0.3 μl RNase H (2 U/μl)

PCR Reaction Mixture

10 μl 10x Ex-Taq HS Buffer with Mg2+
10 μl 2.5 mM dNTPs
0.2 μl Modified Oligo d(T) primer (10 μg/μl)
1 μl Ex-Taq HS Polymerase (5U/μl)
68.8 μl dH2O

10X One-Phor All Buffer

0.5M Potassium acetate
0.1M Tris acetate (pH 7.6)
0.1M Magnesium acetate

Solutions:

10X Phosphate buffered saline (1 liter)

80g NaCl
2g KCl
14.4 g Na2PO4
2.4 g KH2PO4
adjust to pH 7.4 with NaOH and bring the volume to 1 liter with water

Name of the reagent Company Catalog number Comments
Vertical needle puller David Kopf Instruments Model 750  
Microcapillary tubes Sigma P0674  
Aspirator tube assembly Sigma A5177  
Corning filter tips (100-1000 μl Fisher Scientific 07-200-265  
Hank’s balanced salt solution (1X) Lonza BioWhittaker 10-508F  
HEPES buffer (1M) MP Biomedicals 091688449  
Bovine serum albumin Sigma A9418  
DNase I Roche 04716728001  
papain Worthington LS03126  
Superscript III Invitrogen 18080-044  
RNase Inhibitor Applied Biosystems AM2682 These two RNase inhibitors seem to work the best. Contaminants present in other inhibitors can contribute to a background smear.
SUPERase-In Applied Biosystems AM2694 These two RNase inhibitors seem to work the best. Contaminants present in other inhibitors can contribute to a background smear.
Modified Oligo d(T) primer (gel purified) Oligos ETC   We have used primers purchased from many different companies and have seen the most reliable and reproducible results from Oligos ETC.
T4 gene 32 protein New England Biolabs M0300L  
Exonuclease I New England Biolabs M0293S  
TdT Roche 3 333 574 As with other reagents, using a TdT enzyme from other companies gave more variable results.
RNase H Invitrogen 18021-014  
Ex-Taq HS Polymerase Takara RR006A  
Biotin N6-ddATP Enzo Biosciences 42809  

Table 1. Specific reagents and equipment.

References

  1. Tietjen, I. Single-cell transcriptional analysis of neuronal progenitors. Neuron. 38, 161-175 (2003).
  2. Trimarchi, J. M. Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. J. Comp. Neurol. 502, 1047-1065 (2007).
  3. Trimarchi, J. M., Cho, S. H., Cepko, C. L. Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev. Dyn. 238, 2327-2327 (2009).
  4. Cherry, T. J., Trimarchi, J. M., Stadler, M. B., Cepko, C. L. Development and diversification of retinal amacrine interneurons at single cell resolution. Proc. Natl. Acad. Sci. U.S.A. 106, 9495-9500 (2009).
  5. Roesch, K. The transcriptome of retinal Muller glial cells. J. Comp. Neurol. 509, 225-238 (2008).
  6. Ramos, C. A. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells. PLoS Genet. 2, e159 (2006).
  7. Chiang, M. K., Melton, D. A. Single-cell transcript analysis of pancreas development. Dev. Cell. 4, 383-393 (2003).
  8. Trimarchi, J. M., Stadler, M. B., Cepko, C. L. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS ONE. 3, e1588 (2008).
  9. Nelson, S. B., Sugino, K., Hempel, C. M. The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci. 29, 339-345 (2006).
  10. Stevens, C. F. Neuronal diversity: too many cell types for comfort. Curr. Biol. 8, R708-R710 (1998).
  11. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M., Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. U.S.A. 93, 589-595 (1996).
  12. Kim, D. S. Identification of molecular markers of bipolar cells in the murine retina. J. Comp. Neurol. 507, 1795-1810 (2008).
  13. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 453, 544-547 (2008).
  14. Levsky, J. M., Singer, R. H. Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4-6 (2003).
  15. Livesey, F. J., Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109-118 (2001).
  16. Masland, R. H., Raviola, E. Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu. Rev. Neurosci. 23, 249-284 (2000).
  17. Blackshaw, S. Genomic analysis of mouse retinal development. PLoS Biol. 2, e247 (2004).
  18. Livesey, F. J., Young, T. L., Cepko, C. L. An analysis of the gene expression program of mammalian neural progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 101, 1374-1379 (2004).
  19. Chowers, I. Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray. Invest. Ophthalmol. Vis. Sci. 44, 3732-3741 (2003).
  20. Clarke, G. C., Leavitt, R. A., Andrews, B. R., Hayden, D. F., Lumsden, M. R., J, C., McInnes, R. R. A one-hit model of cell death in inherited neuronal degenerations. Nature. 406, 195-199 (2000).
  21. McEvoy, J. F. -. O., Zhang, J., Nemeth, J., Brennan, K., Bradley, R., Krafcik, C., Rodriguez-Galindo, F., Wilson, C., Xiong, M., Lozano, S. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell. 20, 260-275 (2011).
  22. Gelder, R. N. V. a. n. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. U.S.A. 87, 1663-1667 (1990).
  23. Ginsberg, S. D., Che, S. Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons. J. Comp. Neurol. 487, 107-118 (2005).
  24. Iscove, N. N. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20, 940-943 (2002).
  25. Subkhankulova, T., Livesey, F. J. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level. Genome Biol. 7, R18 (2006).
check_url/kr/3824?article_type=t

Play Video

Cite This Article
Goetz, J. J., Trimarchi, J. M. Single-cell Profiling of Developing and Mature Retinal Neurons. J. Vis. Exp. (62), e3824, doi:10.3791/3824 (2012).

View Video