Summary

Gen-omgeving Interactiemodellen om gevoeligheidsmechanismen bij de ziekte van Parkinson te ontmaskeren

Published: January 07, 2014
doi:

Summary

Lipoxygenase (LOX) isozymen kunnen producten genereren die neuro-inflammatie en neurodegeneratie kunnen verhogen of verminderen. Een gen-omgeving interactiestudie kan LOX isozym-specifieke effecten identificeren. Met behulp van het 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridine (MPTP) model van nigrostriatale schade in twee LOX isozym-deficiënte transgene lijnen maakt het mogelijk om de bijdrage van LOX-isozymen aan dopaminerge integriteit en ontsteking te vergelijken.

Abstract

Lipoxygenase (LOX) activiteit is betrokken bij neurodegeneratieve aandoeningen zoals de ziekte van Alzheimer, maar de effecten ervan bij de ziekte van Parkinson (PD) pathogenese zijn minder begrepen. Gen-omgeving interactiemodellen hebben nut bij het ontmaskeren van de impact van specifieke cellulaire routes in toxiciteit die mogelijk niet worden waargenomen met behulp van een alleen genetisch of toxicant ziektemodel alleen. Om te evalueren of verschillende LOX-isozymen selectief bijdragen aan PD-gerelateerde neurodegeneratie, kunnen transgene(d.w.z. 5-LOX en 12/15-LOX-deficiëntie) muizen worden uitgedaagd met een toxine dat celletsel en de dood in de aandoening nabootst. Hier beschrijven we het gebruik van een neurotoxine, 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridine (MPTP), dat een nigrostriatale laesie produceert om de verschillende bijdragen van LOX-isozymen aan neurodegeneratie gerelateerd aan PD op te helderen. Het gebruik van MPTP bij muizen en niet-menselijke primaten is goed ingeburgerd om de nigrostriatale schade bij PD samen te vatten. De omvang van mptp-geïnduceerde laesie wordt gemeten door HPLC-analyse van dopamine en zijn metabolieten en semi-kwantitatieve westerse vlekanalyse van striatum voor tyrosinehydroxylase (TH), het snelheidsbeperkend enzym voor de synthese van dopamine. Om ontstekingsmarkers te beoordelen, die LOX isozymselectieve gevoeligheid kunnen aantonen, worden gliafibrillair zuur eiwit (GFAP) en Iba-1 immunohistochopathie uitgevoerd op hersensecties die substantia nigra bevatten, en GFAP Western blot-analyse wordt uitgevoerd op striatale homogenaten. Deze experimentele aanpak kan nieuwe inzichten verschaffen in gen-omgevingsinteracties die ten grondslag liggen aan nigrostriatale degeneratie en PD.

Introduction

Het gebruik van gen-omgevingsinteractiemodellen biedt een benadering om risicofactoren na te bootsen die waarschijnlijk de idiopathische ziekte van Parkinson (PD) beïnvloeden en biedt de mogelijkheid om mechanistische inzichten te onderscheiden die waarschijnlijk niet zullen worden opgehelderd door het gebruik van een genetisch of toxicant systeem alleen1,2. Hier illustreren we dit punt en beschrijven we de toepassing van het 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridine (MPTP) muismodel van nigrostriatale degeneratie3 om de selectiviteit van lipoxygenase (LOX) isozyme-activiteit op neuro-inflammatie en toxiciteit4beter te begrijpen . Hoewel een rol voor LOX-isozymen op grote schaal is geëvalueerd bij perifere aandoeningen5,6 en de ziekte van CZS, waaronder beroerte7 en de ziekte van Alzheimer8,9,is de rol van de familie van isozymen in nigrostriatale functie en degeneratie gerelateerd aan PD niet goed begrepen en rechtvaardigt studie. Het MPTP-neurotoxine toont preferentiële degeneratie van de nigrostriatale route en vat de striatale dopaminedepletie en het nigrale dopaminerge celverlies samen dat ten grondslag liggen aan motorische stoornissen bij PD-patiënten10. Hoewel dit model niet de volledige cadre van niet-motorisch en motorisch PD-gedrag en frank α-synucleïne-positieve Lewy-lichaamspathologie reproduceert, is het nuttig geweest om nieuwe mechanistische doelen op te helderen die bijdragen aan nigrostriatale schade en voor translationele tests in een vroeg stadium, omdat het het best gekarakteriseerde niet-invasieve model is dat beschikbaar is om op betrouwbare wijze nigrale celdood te produceren, vergezeld van striataal dopamineverlies11-15. Breed gebruik van de MPTP-muis, met paradigma’s variërend van acuut, subacute tot chronisch16-18, heeft het mogelijk gesteld om de dosering te standaardiseren om te resulteren in milde tot ernstige nigrostriatale schade19,20 met activering van verschillende toxiciteitsmechanismen, afhankelijk van het behandelingsregime18,21,22. Bijgevolg maakt dit het mogelijk om een ‘venster van laesie’ te richten dat kan leiden tot versterkt of verminderd nigrostriatal letsel, afhankelijk van het therapeutische middel of het transgene model dat23-25wordt gebruikt.

Ook essentieel voor translationele en ontdekkingsbiologiestudies zijn de technieken die worden gebruikt om schade te beoordelen en het bewijs dat dergelijke methoden leveren. Voor het MPTP-muismodel zijn gevestigde statistieken om laesies te evalueren meting van markers van striatale dopaminerge toon, inclusief dopamine en zijn metabolieten door HPLC, en westerse vlekanalyse van tyrosinehydroxylase (TH), het snelheidsbeperkende enzym in dopaminesynthese, en indicatoren van degeneratieve gebeurtenissen zoals gliaactivering met behulp van westerse vlekanalyse en immunohistochrie4. Hoewel dit klassieke neurochemische, biochemische en histologische procedures zijn, bieden de technieken kritische en reproduceerbare uitlezingen over de omvang van de schade binnen de nigrostriatale dopaminerge route, wijzen ze op toxiciteitsmechanismen en zijn ze waardevolle hulpmiddelen gebleken bij het begrijpen van degeneratieve gebeurtenissen in PD.

Protocol

Opmerking: Alle dierprocedures en dierverzorgingsmethoden moeten worden goedgekeurd door het Institutional Animal Care and Usage Committee (IACUC) van de instelling. De hier beschreven studie werd uitgevoerd in overeenstemming met de richtlijnen die zijn vastgesteld door de IACUC van SRI International. 1. Verwerving en onderhoud van LOX-deficiënte muizen Koop 5-LOX-deficiënte of 12/15-LOX-deficiënte muizen en respectievelijke…

Representative Results

Dit toxine blootstelling paradigma kan produceren een significante en detecteerbare 20% striatale dopamine uitputting in MPTP- vs. zoutoplossing geïnjecteerde dieren. Het is belangrijk op te merken dat verschillende partijen MPTP iets meer of minder laesie kunnen opleveren; dus, voor een betere precisie, wordt een voorlopig experiment bij wildtype muizen aanbevolen voorafgaand aan gebruik in transgenics wanneer een nieuwe partij neurotoxine wordt gebruikt. Het gebruik van milde tot matige laesie maakt het mogelijk om i…

Discussion

Het ontwerp van deze gen-omgeving interactiestudie stelde ons in staat om nieuwe informatie te verkrijgen over de dubbele aard van het 5-LOX isozym in de nigrostriatale route. Door HPLC uit te voeren om striatale monoaminen te meten na een zoutoplossing- of MPTP-behandeling in transgenics zonder het 5-LOX-isozyme en hun wildtype nestgenoten, konden we opmerken dat het tekort ervan beschermend lijkt te zijn onder toxische omstandigheden(figuur 1),maar onder normale omstandigheden vermindert het ontbreken…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dit werk werd gefinancierd door de National Institutes of Health NIGMS 056062.

Materials

1-Methyl-4-phenyl-1,2,3,6-tetra-hydropyridine hydrochloride (MPTP-HCL) Sigma-Aldrich M0896 for PD modeling
4% Formaldehyde (paraformaldehyde) solution, phosphate-buffered (PFA) American MasterTech Scientific BUP0157 for immersion fixation
Perchloric acid ACS reagent, 70% (PCA) Sigma-Aldrich 244252 for HPLC acid extraction
Tris Base Sigma-Aldrich T1503 for tissue homogenization
Ethylenediaminotetraacetic acid disodium salt dihydrate (EDTA) Sigma-Aldrich E1644 for tissue homogenization
Protease inhibitor cocktail Sigma-Aldrich P8340 for tissue homogenization
Phosphatase inhibitor cocktail Sigma-Aldrich P5726 for tissue homogenization
Sodium Hydroxide (NaOH) Sigma-Aldrich S5881 for Lowry protein assay
Sucrose, molecular biology, ≥99.5% (GC)  Sigma-Aldrich S0389 for cryoprotection
Phosphate buffered saline, powder, pH 7.4 (for 0.01 M PBS) Sigma-Aldrich P3813 for IHC
BCA Protein Assay Kit Pierce/Thermo 23225 for protein determination
Novex 12% Tris-Glycine Mini Gels 1.0 mm, 12-well Invitrogen/Life Technologies EC60052BOX for SDS-PAGE
NuPAGE LDS Sample Buffer (4x) Invitrogen/Life Technologies NP0007 for SDS-PAGE
Novex Sharp Prestained Protein Standard  Invitrogen/Life Technologies LC5800 protein ladder
Glycine Sigma-Aldrich G7126 for SDS-PAGE
Sodium dodecyl sulfate, electrophoresis, 98.5% (SDS) Sigma-Aldrich L3771 for SDS-PAGE
Methyl Alcohol, Anhydrous, Reagent  American MasterTech Scientific SPM1057C methanol for transfer
Sodium chloride (NaCl), ACS reagent Sigma-Aldrich S9888 saline and buffers
Nonfat dry milk powder Carnation n/a for immunoblotting
Ponceau S solution in 5% acetic acid  Sigma-Aldrich P7170 for immunoblotting
Anti-Tyrosine Hydroxylase (TH), sheep polyclonal Chemicon/Millipore AB1542 for immunofluorescence 
Anti-Tyrosine Hydroxylase (TH), rabbit polyclonal Pel-Freez Biologicals P40101-0 for immunoblotting
Anti-β Actin, rabbit Sigma-Aldrich A2066 for immunoblotting
Anti-Glial Fibrillary Acidic Protein (GFAP), rabbit polyclonal Chemicon/Millipore AB5804 for immunofluorescence
Anti-Glial Fibrillary Acidic Protein (GFAP), mouse monoclonal Covance Inc. SMI-22R for immunoblotting
Tween-20 Sigma-Aldrich P1379 for immunoblotting
Goat Anti-Rabbit IgG (H+L), Peroxidase Conjugated  Fisher Scientific 31462 for immunofluorescence
goat anti-sheep, peroxidase conjugated Pierce/Thermo 31480 for immunofluorescence
goat anti-mouse, peroxidase conjugated Pierce/Thermo 31430 for immunofluorescence
SuperSignal West Pico Chemiluminescent Substrate Pierce/Thermo 34078 for immunoblotting
CL-XPosure Film 7 in x 9.5 in  Pierce/Thermo 34089 for immunoblotting
Restore Western Blot Stripping Buffer  Pierce/Thermo 21059 for immunoblotting
Citric acid monohydrate, ACS reagent, ≥99.0%  Sigma-Aldrich C1909 for IHC
Normal Donkey Serum Millipore S30-100ML for IHC
Polyvinylpyrrolidone (PVP) Sigma-Aldrich P5288 for IHC
Bovine Serum Albumin (BSA), lyophilized Sigma-Aldrich A3294 for IHC
Triton X-100 Fisher Scientific BP151-01 for IHC
Donkey anti-Rabbit IgG, Alexa Fluor 568-labeled  Invitrogen/Life Technologies A10042 for IHC
Donkey Anti-Sheep IgG (H+L), FITC  Jackson ImmunoResearch 713-095-147 for IHC
VECTASHIELD Hard-Set Mounting Medium with DAPI Vector Laboratories H-1500 for IHC
Normal Goat Serum Millipore S26-100ML for IHC
VECTASTAIN ABC Kit (Rabbit IgG )  Vector Laboratories PK-4001 for IHC; 10 µl each of solutions A and B per 1 ml PBS (per instructions )
DAB Peroxidase Substrate Kit, 3,3’-diaminobenzidine Vector Laboratories SK-4100 for IHC; per 5 ml cold ddH2O, add 2 drops buffer stock solution, 2 drops DAB, and 1 drop H2O2 (H2O2 is added immediately before use)
Hydrogen peroxide, 30% Sigma-Aldrich 216763 for quench step in IHC
Rabbit anti-Iba1 Biocare Medicals CP290A for IHC
Cresyl Violet Solution, Regular Strength  FD Neurotechnologies PS102-01  counterstain for Iba1 IHC
95% Ethanol, reagent alcohol Sigma-Aldrich R8382 dehydration for IHC
100% Absolute ethanol Mallinckrodt  7019-10 dehydration for IHC
Acetic acid Sigma-Aldrich A6283 destaining for IHC
Xylene Sigma-Aldrich 534056 clearing agent for IHC
DPX Mountant Sigma-Aldrich 06522 mounting medium for DAB IHC
O.C.T. Compound – Frozen Section Embedding Medium  American MasterTech Scientific EMOCTCS embeddium medium for cryostat cutting
Potassium permanganate Sigma-Aldrich 223468 to decontaminate DAB solution
Dopamine hydrochloride Sigma-Aldrich H8502 for HPLC
3,4-Dihydroxyphenylacetic acid (DOPAC) Sigma-Aldrich 850217 for HPLC
Homovanillic acid (HVA) Sigma-Aldrich H1252 for HPLC
Perchloric acid (PCA) – 70% Sigma-Aldrich 244252 for HPLC
Sodium dihydrogen phosphate monohydrate Sigma-Aldrich 71504 for HPLC
Citric acid monohydrate Sigma-Aldrich C1909 for HPLC
1-Octanesulfonic acid sodium salt (OSA) Sigma-Aldrich O8380 for HPLC
EDTA Sigma-Aldrich E1644 for HPLC
Acetonitrile EMD AX0145-1 for HPLC
HPLC-grade distilled deionized water (ddH2O) Millipore for HPLC
0.22 µm GSTF membrane Millipore for filtration
Corning Netwells Sigma-Aldrich CLS3477 polystyrene insert with polyester mesh bottom, for IHC
[header]
Ultrasonic cell disrupter (Soniprep 150) MSE MSE.41371.274
Microcentrifuge Eppendorf 5414R
ESA MD-150 reverse-phase column  ESA
HPLC Pump (Ultimate 3000) Dionex ISO-3100BM
HPLC Autosampler (Ultimate 3000) Dionex WPS-3000TSL
Electrochemical detector ESA Coulochem III
Guard Cell ESA 5020
Analytical Cell ESA 5011A
Chromeleon software Dionex
Eclipse E400 Nikon E400 light/fluorescent microscope
Disposable mouse cage Ancare N10HT
Microfilter top Ancare N10MBT
[header]
5-LOX- deficient mice The Jackson Laboratory 004155
12/15-LOX-deficient mice The Jackson Laboratory 002778

References

  1. Manning-Bog, A. B., Langston, J. W. Model fusion, the next phase in developing animal models for Parkinson's disease. Neurotox. Res. 11, 219-240 (2007).
  2. Vance, J. M., Ali, S., Bradley, W. G., Singer, C., Di Monte, D. A. Gene-environment interactions in Parkinson's disease and other forms of parkinsonism. Neurotoxicology. 31, 598-602 (2010).
  3. Heikkila, R. E., Hess, A., Duvoisin, R. C. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 224, 1451-1453 (1984).
  4. Chou, V. P., Holman, T. R., Manning-Bog, A. B. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. 신경과학. 228, 73-82 (2013).
  5. Deschamps, J. D., Kenyon, V. A., Holman, T. R. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg. Med.Chem. 14, 4295-4301 (2006).
  6. Weaver, J. R., et al. Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol. Cell Endocrinol. 358, 88-95 (2012).
  7. Yigitkanli, K., et al. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann. Neurol. 73, 129-135 (2013).
  8. van Leyen, K., et al. Novel lipoxygenase inhibitors as neuroprotective reagents. J Neurosci. Res. 86, 904-909 (2008).
  9. Chu, J., Pratico, D. 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Ann. Neurol. 69, 34-46 (2011).
  10. Langston, J. W., Ballard, P., Tetrud, J. W., Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 219, 979-980 (1983).
  11. Bove, J., Perier, C. Neurotoxin-based models of Parkinson's disease. 신경과학. 211, 51-76 (2012).
  12. Beal, M. F. Neuroprotective effects of creatine. Amino Acids. 40, 1305-1313 (2011).
  13. Jackson-Lewis, V., Blesa, J., Przedborski, S. Animal models of Parkinson's disease. Parkinsonism Relat. Disord. 18, 183-185 (2012).
  14. Dauer, W., Przedborski, S. Parkinson's disease: mechanisms and models. Neuron. 39, 889-909 (2003).
  15. Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M., Dawson, V. L. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann. N.Y. Acad. Sci. 991, 132-139 (2003).
  16. Petroske, E., Meredith, G. E., Callen, S., Totterdell, S., Lau, Y. S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. 신경과학. 106, 589-601 (2001).
  17. Przedborski, S., et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J. Neurochem. 76, 1265-1274 (2001).
  18. Thomas, B., et al. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease. Antioxid. Redox. Signal. 16, 855-868 (2012).
  19. Sonsalla, P. K., Heikkila, R. E. The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol. 129, 339-345 (1986).
  20. Di Monte, D. A., et al. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov. Disord. 15, 459-466 (2000).
  21. Lee, K. W., et al. Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One. 7, (2012).
  22. Jackson-Lewis, V., Przedborski, S. Protocol for the MPTP mouse model of Parkinson's disease. Nat. Protoc. 2, 141-151 (2007).
  23. Bolin, L. M., Strycharska-Orczyk, I., Murray, R., Langston, J. W., Di Monte, D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J. Neurochem. 83, 167-175 (2002).
  24. Manning-Bog, A. B., et al. Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter. Neurobiol. Dis. 27, 141-150 (2007).
  25. Quik, M., Di Monte, D. A. Nicotine administration reduces striatal MPP+ levels in mice. Brain Res. 917, 219-224 (2001).
  26. Markey, S. P., Johannessen, J. N., Chiueh, C. C., Burns, R. S., Herkenham, M. A. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature. 311, 464-467 (1984).
  27. Heikkila, R. E., Manzino, L., Cabbat, F. S., Duvoisin, R. C. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature. 311, 467-469 (1984).
  28. Crampton, J. M., Runice, C. E., Doyle, T. J., Lau, Y. S., Wilson, J. A. MPTP in mice: treatment, distribution and possible source of contamination. Life Sci. 42, 73-78 (1988).
  29. Yang, S. C., Markey, S. P., Bankiewicz, K. S., London, W. T., Lunn, G. Recommended safe practices for using the neurotoxin MPTP in animal experiments. Lab. Anim. Sci. 38, 563-567 (1988).
  30. Lau, Y. S., Novikova, L., Roels, C. MPTP treatment in mice does not transmit and cause Parkinsonian neurotoxicity in non-treated cagemates through close contact. Neuroscience research. 52, 371-378 (2005).
  31. Satoh, N., et al. Central hypothermic effects of some analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP). Neurosci. Lett. 80, 100-105 (1987).
  32. Fernagut, P. O., et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse. 61, 991-1001 (2007).
  33. Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M., Di Monte, D. A. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095-3099 (2003).
  34. Richfield, E. K., et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp. Neurol. 175, 35-48 (2002).
  35. Thomas, B., et al. Resistance to MPTP-neurotoxicity in alpha-synuclein knockout mice is complemented by human alpha-synuclein and associated with increased beta-synuclein and Akt activation. PloS one. 6, (2011).
  36. Smeyne, M., Goloubeva, O., Smeyne, R. J. Strain-dependent susceptibility to MPTP and MPP(+)-induced parkinsonism is determined by glia. Glia. 34, 73-80 (2001).
  37. Hamre, K., Tharp, R., Poon, K., Xiong, X., Smeyne, R. J. Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res. 828, 91-103 (1999).
  38. Sedelis, M., et al. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav. Genet. 30, 171-182 (2000).
  39. Boyd, J. D., et al. Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res. 1175, 107-116 (2007).
  40. Ookubo, M., Yokoyama, H., Kato, H., Araki, T. Gender differences on MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in C57BL/6 mice. Molecular and cellular endocrinology. 311, 62-68 (2009).
  41. Kenchappa, R. S., Diwakar, L., Annepu, J., Ravindranath, V. Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration. FASEB J. 18, 1102-1104 (2004).
  42. Jackson-Lewis, V., Jakowec, M., Burke, R. E., Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration. 4, 257-269 (1995).
  43. Mizuno, Y., Sone, N., Saitoh, T. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 48, 1787-1793 (1987).
  44. Nicklas, W. J., Youngster, S. K., Kindt, M. V., Heikkila, R. E. M. P. T. P. MPP+ and mitochondrial function. Life Sci. 40, 721-729 (1987).
  45. Nicklas, W. J., Vyas, I., Heikkila, R. E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503-2508 (1985).
  46. Wu, D. C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763-1771 (2002).
  47. Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., Czlonkowska, A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50-61 (1999).
  48. Tatton, N. A., Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. 신경과학. 77, 1037-1048 (1997).
  49. Furuya, T., et al. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci. 24, 1865-1872 (2004).
  50. Anderson, D. W., Bradbury, K. A., Schneider, J. S. Neuroprotection in Parkinson models varies with toxin administration protocol. Eur. J. Neurosci. 24, 3174-3182 (2006).
check_url/kr/50960?article_type=t

Play Video

Cite This Article
Chou, V. P., Ko, N., Holman, T. R., Manning-Boğ, A. B. Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson’s Disease. J. Vis. Exp. (83), e50960, doi:10.3791/50960 (2014).

View Video