Summary

另类文化的人多能干细胞的生产,维护和遗传分析

Published: July 24, 2014
doi:

Summary

Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.

Introduction

hPSCs的分化走向多向成体组织的能力开辟了新的途径来治疗从谁,涉及心血管,肝,胰腺和神经系统,严重的1-4患有疾病的患者。从hPSCs派生的各种细胞类型也将提供强大的移动平台,疾病模型,基因工程,药物筛选和毒理试验1,4。确保其未来的临床药理及应用的关键问题是大量的临床级hPSCs通过体外细胞培养的一代。然而,目前的文化系统是不足或固有可变的,涉及hPSCs为菌落5,6各馈线和无饲养层培养。

殖民地式增长的hPSCs股的内细胞团哺乳动物早期胚胎(ICM)的许多结构特征。将ICM容易分化成三个胚层因为在异构信号梯度的存在,多细胞环境。因此,收购异质性在胚胎发育早期被认为是分化的必要过程,但HPSC文化的不必要的功能。在HPSC文化的异质性往往被过度凋亡信号和自发分化,由于不理想的生长条件引起的。因此,在集落类型的文化,异质细胞通常在7,8菌落的周围观察到。它也已表明,细胞在人胚胎干细胞(hESC细胞)菌落表现出不同反应到的信号分子,如BMP-4 9。此外,集落培养方法由于不可控的增长率及凋亡信号通路6,9产生低电池产量以及极低的电池回收率从冷冻保存。在最近几年,各种悬浮培养物已被开发用于培养hPSCs,particul阿尔利扩张的馈线和无基质条件6,10-13大量hPSCs的。显然,不同的文化系统都有自己的优点和缺点。在一般情况下,hPSCs的异质性表示的主要缺点在菌落型的和聚集的培养方法,这是不理想的用于递送DNA和RNA的物料进入hPSCs遗传工程6中的一个。

显然,有一个迫切需要开发出规避目前的文化方法的一些不足之处的新系统。小分子抑制剂(如ROCK抑制剂Y-27632和JAK抑制剂1)提高单细胞存活的发现铺平了道路分离,HPSC文化14,15。通过使用这些小分子,我们最近开发出一种培养方法基于非集群式分离- hPSCs 9(NCM)的增长。这种新颖的培养方法结合了单细胞传代和高密度电镀方法,使我们能够在一致的增长周期产生大量同质hPSCs无重大染色体异常9。或者,NCM培养可能与不同的小分子和定义矩阵(如层粘连蛋白),以优化的培养方法在广泛的应用中实现。在这里,我们提出几个具体的协议的基础上NCM文化和划定详细程序,基因工程。为了证明NCM协议的通用性,我们还测试了NCM的文化与不同的ROCK抑制剂和单层粘连蛋白亚型521( ,LN-521)。

Protocol

hPSCs的单细胞为主的非殖民地式单层(NCM)的文化。 1,准备工作制成500毫升培养基为小鼠胚胎成纤维细胞(MEFs细胞)培养:补充有10%FBS,2mM L-谷氨酰胺和0.1mM非必需氨基酸(NEAA)的DMEM培养基中。 分离小鼠胚胎成纤维细胞的CF1系以下例行协议16和培养的MEF上0.1%明胶包被的6孔细胞培养板中的DMEM培养基中衍生(的MEF)细胞。另外,购买股票的MEF第3代?…

Representative Results

NCM文化的一般模式 图1显示出高密度的单细胞接种在ROCK抑制剂Y-27632的存在后hPSCs的动态变化典型的NCM的文化模式。这些形态变化包括电镀,细胞簇的形成,并呈指数生长的细胞,然后进行细胞缩合( 图1A)之后,细胞间的连接。代表性实验表明WA01(H1)的胚胎干细胞,镀成单细胞在1.9×10 5个细胞/ cm 2在10μMY-27632在第1天?…

Discussion

有两种主要的方法来培养hPSCs 体外 :常规菌落型培养物(细胞上馈线或细胞外基质)和hPSCs作为骨料未经进料器6的悬浮培养物。这两个殖民地式和悬浮培养方法的局限性包括累积的异质性和可继承的表观遗传变化。 NCM培养的基础上,无论是单细胞传代和高密度的细胞接种,代表了一种新的培养方法对HPSC生长6,18。尽管各单细胞传代的方法已被记载在文献中,但他们都不是?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.

Materials

Countess automated cell counter   Invitrogen Inc.  C10227 Automatic cell counting
Faxitron Cabinet X-ray System Faxitron X-ray Corporation, Wheeling, IL  Model RX-650 X-ray irradiation of MEFs
MULTIWELL six-well plates  Becton Dickinson Labware 353046 Polystyrene plates 
DMEM Invitrogen Inc. 11965–092 For MEF medium
mitomycin C Roche  107 409 Mitotic inhibitor
Trypsin Invitrogen Inc. 25300-054 For MEF dissociation
DMEM/F12  Invitrogen Inc. 11330–032 For hPSC medium
Opti-MEM I Reduced Serum Medium  Invitrogen Inc. 31985-062 For hPSC transfection
Heat-inactivated FBS Invitrogen Inc. 16000–044 Component of MEF medium
Knockout Serum Replacer  Invitrogen Inc. 10828–028 KSR, Component of hPSC medium
Dulbecco’s Phosphate-Buffered Saline Invitrogen Inc. 14190-144 D-PBS, free of Ca2+/Mg2+
Non-essential amino acids  Invitrogen  11140–050 NEAA, component of hPSC medium
L-Glutamine  Invitrogen  25030–081 Component of hPSC medium
mTeSR1 & Supplements StemCell Technologies 5850 Animal protein-free
medium
TeSR2 & Supplements StemCell Technologies 5860 Xeno-free medium
β-mercaptoethanol  Sigma  7522 Component of hPSC medium

MEF (CF-1) ATCC
American Type Culture Collection (ATCC)  SCRC-1040 For feeder culture of hPSCs
hESC-qualified Matrigel BD Bioscience 354277 For feeder-free culture of hPSCs
Laminin-521 BioLamina LN521-02 Human recombinant protein
FGF-2 (recombinant FGF, basic) R&D Systems, MN 223-FB Growth factor in hPSC medium
CryoStor CA10  StemCell Technologies 7930
Accutase Innovative Cell Technologies AT-104 1X mixed enzymatic solution
JAK inhibitor I EMD4 Biosciences 420099 An inhibitor of Janus kinase
Y-27632 EMD4 Biosciences 688000 ROCK inhibitor
Y-27632 Stemgent 04-0012 ROCK inhibitor
Y-39983 Stemgent 04-0029 ROCK I inhibitor
Phenylbenzodioxane  Stemgent 04-0030 ROCK II inhibitor
Thiazovivin Stemgent 04-0017 A novel ROCK inhibitor
BD Falcon Cell Strainer  BD Bioscience 352340 40-µm cell strainer
Nalgene 5100-0001 Cryo 1°C Thermo Scientific  C6516F-1 “Mr. Frosty” Freezing Container
Lipofectamine 2000  Invitrogen Inc. 11668-027 Transfection reagents
DharmaFECT Duo  Thermo Scientific T-2010-02 Transfection reagent
Non-targeting miRIDIAN miRNA Transfection Control Thermo Scientific IP-004500-01-05 Labeled with Dy547, to monitor the delivery of microRNAs 
SMART-shRNA Thermo Scientific  To be determined Lentiviral vector
pmaxGFP amaxa Inc (Lonza) Included in every transfection kit Expression plasmid for transfection control
4-Oct Santa Cruz Biotechnology sc-5279 Mouse IgG2b, pluripotent marker
SSEA-1 Santa Cruz Biotechnology sc-21702 Mouse IgM, differentiation marker
SSEA-4 Santa Cruz Biotechnology sc-21704 Mouse IgG3, pluripotent marker
Tra-1-60 Santa Cruz Biotechnology sc-21705  Mouse IgM, pluripotent marker
Tra-1-81 Santa Cruz Biotechnology sc-21706 Mouse IgM, pluripotent marker
CK8 (C51) Santa Cruz Biotechnology sc-8020 Mouse IgG1, against cytokeratin 8
α-fetoprotein Santa Cruz Biotechnology sc-8399 AFP, mouse IgG2a
HNF-3β (P-19) Santa Cruz Biotechnology sc-9187 FOXA2, goat polyclonal antibody
Troponin T (Av-1) Thermo Scientific MS-295-P0 Mouse IgG1
Desmin  Thermo Scientific RB-9014-P1 Rabbit IgG
Anti-NANOG ReproCELL Inc, Japan RCAB0004P-F Polyclonal antibody 
Rat anti-GFAP Zymed 13-0300 Glial fibrillary acidic protein
Albumin (clone HSA1/25.1.3) Cedarlane Laboratories Ltd. ( CL2513A Mouse IgG1,
Smooth muscle actin (clone 1A4) DakoCytomation Inc IR611/IS611 Mouse IgG2a
Nestin Chemicon International MAB5326 Rabbit polyclonal antibody
TUBB3 Convance Inc MMS-435P Tuj1, mouse IgG2a
HNF4α (C11F12) Cell Signaling Technologies 3113 Rabbit monoclonal antibody
Paraformaldehyde (solution) Electron Microscopy Sciences 15710 PFA, fixative, diluted in D-PBS

References

  1. Cherry, A. B., Daley, G. Q. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med. 64, 277-290 (2013).
  2. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  3. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  4. Burridge, P. W., et al. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10, 16-28 (2012).
  5. Mallon, B. S., et al. StemCellDB: The Human Pluripotent Stem Cell Database at the National Institutes of Health. Stem Cell Res. 10, 57-66 (2012).
  6. Chen, K. G., et al. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 14, 13-26 (2014).
  7. Bendall, S. C., et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 448, 1015-1021 (2007).
  8. Moogk, D., et al. Human ESC colony formation is dependent on interplay between self-renewing hESCs and unique precursors responsible for niche generation. Cytometry A. 77, 321-327 (2010).
  9. Chen, K. G., et al. Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Res. 9, 237-248 (2012).
  10. Amit, M., et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. 6, 248-259 (2010).
  11. Dang, S. M., et al. scalable embryonic stem cell differentiation culture. Stem Cells. 22, 275-282 (2004).
  12. Serra, M., et al. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 30, 350-359 (2012).
  13. Steiner, D., et al. propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 28, 361-364 (2010).
  14. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25, 681-686 (2007).
  15. Androutsellis-Theotokis, A., et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 442, 823-826 (2006).
  16. Jozefczuk, J., et al. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. , (2012).
  17. Kozhich, O. A., et al. Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells. Stem Cell Rev. , (2012).
  18. Kunova, M., et al. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med. 2, 246-254 (2013).
  19. Tsutsui, H., et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2, 167 (2011).
  20. Amps, K., et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 29, 1132-1144 (2011).
  21. Baker, D. E., et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 25, 207-215 (2007).
  22. Lee, A. S., et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 19, 998-1004 (2013).
  23. Domogatskaya, A., et al. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells. 26, 2800-2809 (2008).
  24. Domogatskaya, A., et al. Functional diversity of laminins. Annu Rev Cell Dev Biol. 28, 523-553 (2012).
  25. Rodin, S., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 28, 611-615 (2010).
  26. Liew, C. G., et al. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 25, 1521-1528 (2007).
  27. Braam, S. R., et al. Genetic manipulation of human embryonic stem cells in serum and feeder-free media. Methods Mol Biol. 584, 413-423 (2010).
  28. Braam, S. R., et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods. 5, 389-392 (2008).

Play Video

Cite This Article
Chen, K. G., Hamilton, R. S., Robey, P. G., Mallon, B. S. Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis. J. Vis. Exp. (89), e51519, doi:10.3791/51519 (2014).

View Video