Summary

组织鬼怪模拟,以评估乳癌手术潜在的近红外荧光成像中的应用

Published: September 19, 2014
doi:

Summary

Near-infrared fluorescence (NIRF) imaging may improve therapeutic outcome of breast cancer surgery by enabling intraoperative tumor localization and evaluation of surgical margin status. Using tissue-simulating breast phantoms containing fluorescent tumor-simulating inclusions, potential clinical applications of NIRF imaging in breast cancer patients can be assessed for standardization and training purposes.

Abstract

不准确的术中肿瘤的定位及手术切缘状态结果在保乳手术(BCS)的次优结果的评价。光学成像,特别是近红外荧光(NIRF)成像,可以通过提供的外科医生用在实时前和术中肿瘤的定位工具降低阳性手术切缘的下面BCS的频率。在目前的研究中,NIRF引导BCS的潜在利用组织模拟乳房假体的标准化和培训的原因进行了评价。

乳房假体与媲美正常乳腺组织的光学特性来模拟乳腺癌保乳手术。肿瘤模拟含有荧光染料吲哚菁绿(ICG)的夹杂物被结合在体模在预定的位置和成像前和术中肿瘤的定位,实时NIRF引导肿瘤切除术,NIRF制导评估手术的程度,以及手术切缘术后评估。定制的NIRF相机作为一种临床原型成像的目的。

含肿瘤模拟夹杂物的乳房假体提供了一个简单,价格低廉,用途广泛的工具来模拟并评估术中肿瘤成像。凝胶状幻影具有类似于人体组织的弹性属性,并且可以使用常规的外科手术器械进行切割。此外,该模体含有血红蛋白和脂肪乳用于模仿吸收的光子和散射,分别建立类似于人类乳腺组织均匀的光学特性。 NIRF成像的主要缺点是有限的穿透深度的光子穿过组织,从而阻碍深层肿瘤(非侵袭性)成像反射照明策略传播时。

Introduction

保乳手术(BCS),其次是放射治疗是乳腺癌患者的标准治疗为T 1-T 2乳腺癌1,2。不准确的手术结果的阳性手术切缘在20至40%的谁接受BCS,因此需要附加的外科手术或放射治疗3,4,5病人的程度术评估。虽然广泛切除邻近健康乳房组织可能会降低手术切缘阳性的频率,这也将阻碍美容效果,并增加合并症6,7。因此,需要新的技术,提供了对原发肿瘤的位置和手术的程度术的反馈。光学成像,特别是近红外荧光(NIRF)成像,可以通过提供的外科医生用的r中前和术中肿瘤的定位工具减少以下BCS阳性手术切缘的频率EAL时间。最近,我们小组汇报了卵巢癌患者先在人类试验的肿瘤靶向荧光成像,显示出这项技术来检测原发肿瘤及腹腔转移癌具有较高的敏感性8的可行性。在继续到临床研究中的乳腺癌患者,但是,各种肿瘤靶向NIRF成像应用中的BCS的可行性已经可以使用临床前体模进行评价。

下面的研究方案介绍含有荧光肿瘤模拟夹杂9组织模拟乳房假体的使用NIRF成像。幽灵提供了一个廉价和灵活的工具来模拟前和术中肿瘤定位,实时NIRF引导肿瘤切除术,对手术切缘状况进行评估,并检测残留病灶。凝胶状幻影具有类似于人体组织的弹性属性,并且可以使用常规s中被切urgical仪器。在模拟的手术过程中,外科医生通过触觉信息(在可触知的夹杂物的情况下)和手术区域的视觉检查指导。此外,NIRF成像应用,以提供对手术的程度实时术中反馈的外科医生。

但是应当强调的是,NIRF成像需要使用的荧光染料。理想地,荧光染料,应使用能发出在近红外光谱范围内的光子(650 – 900纳米),以尽量减少由分子在组织生理学上丰富的吸收的光子和散射( 例如 ,血红蛋白,脂质,弹性蛋白,胶原,和水) 10,11。而且,自体荧光( 即,在由于在活细胞中的生化反应组织中的固有荧光活性)被最小化,在近红外光谱范围内,产生最佳的肿瘤-背景比11。由共轭NIRF染料肿瘤精华素泰德部分( 例如,单克隆抗体),可用于术中成像应用而获得的靶向递送的荧光染料。

由于人的眼睛是不敏感的,在近红外光谱范围内点亮,高灵敏度的摄像机装置所需的NIRF成像。已经开发了几个NIRF成像系统,术中使用迄今12。在当前的研究中,我们使用一个自定义的构建是在术中的合作与应用慕尼黑工业大学开发NIRF成像系统。该系统允许同时获取彩色图像和荧光图像。以提高荧光图像的精度,校正方案为光强变化的组织实施。详细描述通过Themelis 等人提供的。13

Protocol

1,创建模具硅胶用于肿瘤模拟夹杂物收集所希望的形状和尺寸可以作为肿瘤模拟夹杂物, 如珠子或弹子模型的固体物品。 彻底清洁肿瘤模型。以确保容易地移除从硅酮模具中,肿瘤模型可喷施抗粘附喷涂或覆盖有一层薄薄的凡士林或蜂蜡的。 放置在一个单独的薄壁方(塑料)中的每个模型表面光滑。如果需要的话,注视模型到盒子的底部以保持其位置。用一个框,?…

Representative Results

从本研究结果已经预先别处9报告。 我们的数据表明,NIRF成像可应用于检测荧光肿瘤模拟夹杂物在组织模拟乳房假体,模拟NIRF制导保乳手术的乳腺癌患者。使用我们的幻象模型,我们发现术中肿瘤的定位,NIRF引导肿瘤切除术,手术腔边缘的术评估,并检测残留病是可行的(图2)。简单地说,一共有4乳房假体的制作,都包含两个荧光夹杂有明显的尺寸和/…

Discussion

我们通过使用乳房形幻影集成肿瘤模拟夹杂模拟NIRF制导BCS的潜在的临床应用。术中肿瘤的定位,NIRF引导下肿瘤切除术,手术的程度的评估,以及手术切缘术后评估中使用自定义构建NIRF摄像系统中的所有可行的。非侵入性的检测荧光肿瘤模拟夹杂物仅是为夹杂物定位在虚线组织在2厘米或更小的深度是可行的。术,但是,在有限的信号的穿透深度在很大程度上解决了由BCS手术的性质,其中,所述外…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a grant from the Jan Kornelis de Cock foundation.

Materials

Bovine hemoglobin Sigma-Aldrich, Zwijndrecht, The Netherlands H2500 Simulates absorption of photons in tissue 
Intralipid 20% Sigma-Aldrich, Zwijndrecht, The Netherlands I141 Simulates scattering of photons in tissue
Silicone A translucent 40 (2-components poly-addition silicone) NedForm, Geleen, The Netherlands N/A Package consists of components A and B, that should be mixed one on one (A:B=10:1).  Link to manufacturers page: http://tinyurl.com/ncjq7jx
Gelatine 250 Bloom Sigma-Aldrich, Zwijndrecht, The Netherlands 48724 Construction of breast-shaped phantoms
Agarose Hispanagar, Burgos, Spain N/A Construction of tumor-simulating inclusions
Tris Sigma-Aldrich, Zwijndrecht, The Netherlands T1503 
Hcl Sigma-Aldrich, Zwijndrecht, The Netherlands 258148
NaCl Sigma-Aldrich, Zwijndrecht, The Netherlands S9888
NaH3 Merck, Darmstadt, Germany 822335 CAUTION: severe poison. The toxicity of this compound is comparable to that of soluble alkali cyanides and the lethal dose for an adult human is about 0.7 grams.
Examples of NIRF imaging devices for intraoperative application:
T2 NIRF imaging platform  SurgVision BV, Heerenveen, The Netherlands N/A Customized NIRF imaging system used in the current study. More details available at www.surgvision.com
Photodynamic Eye Hamamatsu Photonics Deutschland GmbH, Herrsching am Ammersee, Germany PC6100 www.iht-ltd.com
FLARE imaging system kit The FLARE Foundation Inc, Wayland, MA, USA N/A www.theflarefoundation.org
Fluobeam Fluoptics, Grenoble, France N/A www.fluoptics.com
Artemis handheld camera Quest Medical Imaging BV, Middenmeer, the Netherlands N/A www.quest-mi.com
Examples of NIRF fluorescent dyes for intraoperative application:
Indocyanine green ICG-PULSION,  Feldkirchen, Germany PICG0025DE   Clinical grade fluorescent dye for NIRF imaging used in the current study. More details available at www.pulsion.com
IRDye 800CW NHS Ester LI-COR Biosciences, Lincoln, NE, USA 929-70021 www.licor.com

References

  1. Bellon, J. R., et al. ACR Appropriateness Criteria® Conservative Surgery and Radiation – Stage I and II Breast Carcinoma. The Breast Journal. 17 (5), 448-455 (2011).
  2. Kaufmann, M., Morrow, M., Von Minckwitz, G., Harris, J. R. The Biedenkopf Expert Panel Members. Locoregional treatment of primary breast cancer. Cancer. 116, 1184-1191 (2010).
  3. Pleijhuis, R. G., et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. The Annals of Surgical Oncology. 16, 2717-2730 (2009).
  4. Singletary, S. E. Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy. American Journal of Surgery. 184 (5), 383-393 (2002).
  5. Jacobs, L. Positive margins: the challenge continues for breast surgeons. Annals of Surgical Oncology. 15 (5), 1271-1272 (2008).
  6. Krekel, N., et al. Excessive resections in breast-conserving surgery a retrospective multicentre study. The Breast Journal. 17 (6), 602-609 (2011).
  7. Wood, W. C. Close/positive margins after breast-conserving therapy: additional resection or no resection?. Breast. 22, 115-117 (2013).
  8. Van Dam, G. M., et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nature Medicine. 17 (10), 1315-1319 (2011).
  9. Pleijhuis, R. G., et al. Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms. European Journal of Surgical Oncology. 37 (1), 32-39 (2011).
  10. Baeten, J., Niedre, M., Dunham, J., Ntziachristos, V. Development of fluorescent materials for Diffuse Fluorescence Tomography standards and phantoms. Optics Express. 15 (14), 8681-8694 (2007).
  11. Luker, G. D., Luker, K. E. Optical imaging: current applications and future directions. Journal of Nuclear Medicine. 49 (1), 1-4 (2007).
  12. Keereweer, S., et al. Optical image-guided surgery – Where do we stand?. Molecular Imaging Biology. 13 (2), 199-207 (2011).
  13. Themelis, G., Yoo, J. S., Soh, K. S., Shulz, R., Ntziachristos, V. Real-time intraoperative fluorescence imaging system using light-absorption correction. Journal of Biomedical Optics. 14 (6), 064012 (2009).
  14. Themelis, G., et al. Enhancing surgical vision by using real-time imaging of αvβ3-integrin targeted near-infrared fluorescent agent. Annals of Surgical Oncology. 18 (12), 3506-3513 (2011).
  15. De Grand, A. M., et al. Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons. Journal of Biomedical Optics. 11 (1), 014007 (2006).
  16. Intes, X. Time-domain optical mammography SoftScan: initial results. Academic Radiology. 12 (10), 934-947 (2005).
  17. Kirsch, D. G., et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Medicine. 13 (8), 992-997 (2007).
  18. Tafreshi, N. K., et al. Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clinical Cancer Research. 18 (1), 207-219 (2012).
  19. Nguyen, Q. T., Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation – a new cutting edge. Nature Reviews Cancer. 13 (9), 653-662 (2013).
  20. Orosco, R. K., Tsien, R. Y., Nguyen, Q. T. Fluorescence imaging in surgery. IEEE Reviews in Biomedical Engineering. 6, 178-187 (2013).

Play Video

Cite This Article
Pleijhuis, R., Timmermans, A., De Jong, J., De Boer, E., Ntziachristos, V., Van Dam, G. Tissue-simulating Phantoms for Assessing Potential Near-infrared Fluorescence Imaging Applications in Breast Cancer Surgery. J. Vis. Exp. (91), e51776, doi:10.3791/51776 (2014).

View Video