Summary

Mus Pneumonectomy Model af kompenserende Lung Vækst

Published: December 17, 2014
doi:

Summary

Mouse pneumonectomy is a commonly employed model of compensatory lung growth. This procedure can be used in conjunction with lineage tracing or transgenic mouse models to elucidate underlying mechanisms.

Abstract

In humans, disrupted repair and remodeling of injured lung contributes to a host of acute and chronic lung disorders which may ultimately lead to disability or death. Injury-based animal models of lung repair and regeneration are limited by injury-specific responses making it difficult to differentiate changes related to the injury response and injury resolution from changes related to lung repair and lung regeneration. However, use of animal models to identify these repair and regeneration signaling pathways is critical to the development of new therapies aimed at improving pulmonary function following lung injury. The mouse pneumonectomy model utilizes compensatory lung growth to isolate those repair and regeneration signals in order to more clearly define mechanisms of alveolar re-septation. Here, we describe our technique for performing mouse pneumonectomy and sham pneumonectomy. This technique may be utilized in conjunction with lineage tracing or other transgenic mouse models to define molecular and cellular mechanism of lung repair and regeneration.

Introduction

Den vigtigste funktion af lungen er at sørge for ilt og kuldioxid udveksling mellem en organisme og atmosfæren. Hos mennesker en masse af medfødte og erhvervede betingelser føre til nedsat lunge overfladeareal, hvilket resulterer i forringet lungefunktion. Selv om en række behandlinger såsom inhalerede kortikosteroider, bronkodilatatorer, supplerende ilt og kronisk mekanisk ventilation anvendes til at afbøde følgerne af nedsat lungefunktion 1-3, vil den ideelle behandling for disse tilstande fremmer genvækst af funktionel lungevæv – dvs. lunge regenerering.

Pattedyrvæv regenerering er veldokumenteret. Den afrikanske Spiny Mouse kan regenerere store områder af huden uden ardannelse 4. Den distale phalanx i mennesker kan regenerere efter skade eller amputation 5-7. Efter pneumonectomy (PNX) forekommer kompenserende lunge vækst i mus 8 rotter 9, gørgs 10, og mennesker 11. Per definition kompenserende lunge vækst indebærer ikke kun udvidelse af eksisterende luftrum, men re-septumdannelse af disse udvidede luftrum med udvidelse af den tilhørende mikrocirkulationen 12. Genekspressionsanalyse har vist, at denne model sammenfatter mange af de signaler begivenheder lunge udvikling 13. Fire uger efter mus PNX, alveolære overflade svarer til den for skinopererede dyr 14. I dette manuskript, beskriver vi musen PNX og fingeret PNX procedurer.

Protocol

BEMÆRK: Animal brug erklæring: Alle procedurer i denne undersøgelse blev udført med godkendelse og efter retningslinjerne i Institutional Animal brug og pleje Udvalg (IACUC) ved Cincinnati Børnehospital. Otte uger gamle C57BL / 6J-hanmus blev opnået fra Jackson Laboratories (Bar Harbor, ME) og fik lov at akklimatisere sig i en uge før anvendelse. Indtil kirurgi blev dyrene anbragt i et patogen-fri barriere, og forudsat autoklaveret chow og filtreret vand ad libdium. Hver mus bur blev leveret med en dedik…

Representative Results

. En afbildning af PNX og skinopererede mus vægte er tilvejebragt i figur 6 i vores hænder, overlevelse er konsekvent 95-100% for både PNX og humbug pneumonectomy. For beskrivelser af, hvordan højre lunge igen vokser i denne model og den forventede tid vi naturligvis henvise læseren til manuskripter Gibney et al. 15 og Wang et al. 14 Flere almindelige faldgruber skal undgås med succes udføre mus PNX og mus humbug pneumonectomy p…

Discussion

Vi har givet den mest detaljerede beskrivelse af de mus PNX og mus fingeret PNX procedurer rapporteret til dato. Vi har gjort læseren opmærksom på flere af de almindelige faldgruber at efterforskerne lære proceduren sædvanligvis støder, og vi har skitseret en række teknikker udviklet af vores laboratorium for at afbøde disse faldgruber. Andre laboratorier anvender denne model kan have udviklet andre teknik modifikationer eller bruge forskellige instrumenter. Ved evalueringen forskelle i teknikker, vil de enkelte…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the Cincinnati Children’s Hospital Division of Veterinary Services for their assistance. This manuscript was supported by the National Institutes of Health K12 HD028827. Anna Perl PhD taught the authors this surgical procedure.

Materials

Name of the reagent Company Catalogue number Comments (optional)
6-inch Vascular Clip Applicator Teleflex Medical (WECK) 137062
Horizon Small Titanium Red Clip Teleflex Medical (WECK) 1201
Narrow Pattern 12cm Curved Forceps Fine Science Tools 11003-12
Curved Serated 10 cm Graefe Forceps  Fine Science Tools 11052-10
Castroviejo Needle Holder Fine Science Tools 12565-14
Straight 9 cm Strabismus Scissors (Blunt Tip) Fine Science Tools 14075-09
Straight 8.5 cm Hardened Fine Scissors Fine Science Tools 14090-09
Straight, Blunt Tip Cohan-Vannas Spring Scissors Fine Science Tools 15000-12
Skin Glue Gluture 32046
22 ga angiocatheter
24 ga angiocatheter
3 mL luer lock syringe
4 short retractors
2 long retractors
5-0 Prolene on curved cutting needle Ethicon 8698G
0.5 mL syringe on 27 ga needle
Normal Saline
Buprenorphine
Press-n-Seal Wrap Glad Products Company
12 inch X 12 inch cork board stack Office Depot
70% Ethanol
Betadine
Mouse Ventilator Hugo Sachs Elektronnik  Minivent Type 845
Isoflurane Vaporizer OHMEDA Excel 210 SE
artificial tear ointment puralube NDC: 17033-211-38

References

  1. Strueby, L., Thebaud, B. Advances in bronchopulmonary dysplasia. Expert review of respiratory medicine. , (2014).
  2. Donn, S. M., Sinha, S. K. Recent advances in the understanding and management of bronchopulmonary dysplasia. Seminars in fetal & neonatal medicine. 14, 332 (2009).
  3. Molen, T., Miravitlles, M., Kocks, J. W. COPD management: role of symptom assessment in routine clinical practice. International journal of chronic obstructive pulmonary disease. 8, 461-471 (2013).
  4. Seifert, A. W., et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 489, 561-565 (2012).
  5. Vidal, P., Dickson, M. G. Regeneration of the distal phalanx. A case report. Journal of hand surgery. 18, 230-233 (1993).
  6. Potter, P. C., Levine, M. H. Bone Regeneration Following Chronic Suppurative Osteitis of the Distal Phalanx. Annals of surgery. 80, 728-729 (1924).
  7. McKim, L. H. Regeneration of the Distal Phalanx. Canadian Medical Association journal. 26, 549-550 (1932).
  8. Brown, L. M., Rannels, S. R., Rannels, D. E. Implications of post-pneumonectomy compensatory lung growth in pulmonary physiology and disease. Respir Res. 2, 340-347 (2001).
  9. Holder, N. Regeneration and compensatory growth. British medical bulletin. 37, 227-232 (1981).
  10. Hsia, C. C. Lessons from a canine model of compensatory lung growth. Curr Top Dev Biol. 64, 17-32 (2004).
  11. Butler, J. P., et al. Evidence for adult lung growth in humans. N Engl J Med. 367, 244-247 (2012).
  12. Konerding, M. A., et al. Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis. 15, 23-32 (2012).
  13. Kho, A. T., Liu, K., Visner, G., Martin, T., Boudreault, F. Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol. 305, 542-554 (2013).
  14. Wang, W., Nguyen, N. M., Guo, J., Longitudinal Woods, J. C. Noninvasive Monitoring of Compensatory Lung Growth in Mice after Pneumonectomy via (3)He and (1)H Magnetic Resonance Imaging. Am J Respir Cell Mol Biol. 49, 697-703 (2013).
  15. Gibney, B. C., et al. Detection of murine post-pneumonectomy lung regeneration by 18FDG PET imaging. EJNMMI research. 2, 48 (2012).
  16. Rawlins, E. L., Perl, A. K. The a’MAZE’ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol. 46, 269-282 (2012).
  17. Ochs, M., Muhlfeld, C. Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. Am J Physiol Lung Cell Mol Physiol. 305, L15-22 (2013).
  18. Ysasi, A. B., et al. Effect of unilateral diaphragmatic paralysis on postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol. 305, L439-445 (2013).
  19. Dane, D. M., Yilmaz, C., Estrera, A. S., Hsia, C. C. Separating in vivo mechanical stimuli for postpneumonectomy compensation: physiological assessment. Journal of applied physiology. 114, 99-106 (2013).
  20. Mortola, J. P., Magnante, D., Saetta, M. Expiratory pattern of newborn mammals. Journal of applied physiology. 58, 528-533 (1985).
  21. MacDonald, K. D., Chang, H. Y., Mitzner, W. An improved simple method of mouse lung intubation. Journal of applied physiology. 106, 984-987 (2009).
check_url/kr/52294?article_type=t

Play Video

Cite This Article
Liu, S., Cimprich, J., Varisco, B. M. Mouse Pneumonectomy Model of Compensatory Lung Growth. J. Vis. Exp. (94), e52294, doi:10.3791/52294 (2014).

View Video