Summary

Generation af CAR T-celler til adoptiv terapi i forbindelse med glioblastom standard for pleje

Published: February 16, 2015
doi:

Summary

The lymphodepletive and immunomodulatory effects of chemotherapy and radiation standard of care can be leveraged to enhance the antitumor efficacy of T cell immunotherapy. We outline a method for generating EGFRvIII-specific chimeric antigen receptor (CAR) T cells and administering them in the context of glioblastoma standard of care.

Abstract

Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.

Introduction

Glioblastoma (GBM) er den mest almindelige primære maligne hjernetumor og er uvægerligt dødelig. Kirurgisk resektion kombineret med ikke-specifik standard pleje kemoterapi og strålebehandling ikke helt at eliminere maligne celler, hvilket resulterer i en trist prognose på mindre end 15 måneder hos patienter med denne sygdom 1. I modsætning hertil immunterapi tilbyder en præcis fremgangsmåde til specifikt at målrette tumorcellerne og således har potentiale til at tjene som en yderst effektiv behandling platform med reduceret risiko for sikkerhed toksicitet 2-4. T-celler manipuleret ex vivo til at udtrykke kimære antigen-receptorer (biler) tilbyder en alsidig strategi for tumor immunterapi. Biler er genereret ved sammensmeltning af det ekstracellulære variable region af et antistof med en eller flere intracellulære T-celle signalering molekyle (r), i stedet for en fuld-længde større histokompatibilitetskompleks (MHC) -begrænset T-cellereceptor 5. Denne tilstand af antistof-lignende antigen recognitipå tillader reaktive antigenspecifikke T-celler til at genkende og reagere på tumorantigener i fravær af MHC, og kan tilpasses til en praktisk talt uendelig antigen repertoire.

CAR T-celler manipuleret mod forskellige tumorantigener har vist præklinisk effektivitet og enestående løfte i klinikken 6-9. Specifikt i forbindelse med GBM, en målretning CAR T-celle platform epidermal vækstfaktor receptor variant III (EGFRvlll), en tumor-specifik mutation udtrykt på celleoverfladen 10, blev vist at forlænge overlevelsen i gliom-bærende mus 11. På trods af deres alsidighed, men den kliniske fordel af CAR adoptiv behandling er ikke blevet realiseret fuldt ud, dels på grund af tumor-associerede immunosuppression og immun unddragelse 12-16 samt udfordringer i at etablere og opretholde antigen-specifikke T-celler in vivo. Udnyttelse standardbehandling (SOC) med immunterapi potentielt kan overvinde flere af disse lefterligninger, hvilket resulterer i øget effektivitet i både den prækliniske og kliniske omgivelser.

SOC for post-resektion GBM består af højdosis temozolomid (TMZ), et DNA-alkyleringsmiddel 17, og hele hjernen bestråling (WBI) 1. Disse behandlinger formodes at virke synergistisk med tumorvacciner via opregulering af tumor MHC-ekspression 18-20 samt afgivelse af antigener ved døde tumorceller 17,19,21,22. Faktisk tilsætning af TMZ 20,23 eller WBI 18,24 fører til øget antitumorvirkning af immun-baserede behandlinger i prækliniske indstilling. Desuden, ligesom mange uspecifikke cytotoksiske kemoterapeutika, TMZ kendt for at forårsage systemisk lymfopeni 25,26, som kan udnyttes som et middel til host-conditioning til adoptiv terapi platforme 27-29. TMZ-medieret lymphodepletion har vist sig at forbedre frekvensen og funktion af antigen-specifikke T-celler, hvilket fører til forøget effektivitet af en vedtative terapi platform mod intrakranielle tumorer 30. I forbindelse med CAR terapi, lymphodepletion tjener som et middel til host-konditionering ved både at reducere antallet af endogene suppressor-T-celler 31 og inducere homeostatiske proliferation 32 via reduceret konkurrence om cytokiner 33 og dermed øge antitumoraktivitet 11,34. På grund af den synergistiske forhold mellem GBM SOC og immunterapi platforme, evaluere nye adoptivforældre behandlingsformer og vaccine-platforme i forbindelse med SOC er kritisk for udarbejdelsen meningsfulde konklusioner om effekten.

I denne protokol, vi skitsere en metode til generering og intravenøs administration af murine EGFRvlll-specifikke CAR T-celler sammen TMZ og WBI i mus med EGFRvIII-positive intrakranielle tumorer (se figur 1 for behandling tidslinje). Kort fortalt CAR T-celler fremstillet ex vivo ved retroviral transduktion. Humane embryoniske nyre (HEK) 293T celler transficeres under anvendelse af en DNA / lipid-komplekset (indeholdende CAR vektor og PCL-Eco plasmider) for at fremstille virus, der derefter anvendes til at transducere aktiverede murine splenocytter, der er høstet og dyrket i parallel. I løbet af CAR generation, er murine værter bærer EGFRvlll-positive intrakranielle tumorer indgives fraktioneret hel-hjerne røntgenbestråling og systemisk TMZ behandling ved doser svarende til klinisk SOC. CAR T-celler leveres derefter intravenøst ​​til lymphodepleted værter.

Følgende procedure er beskrevet i syv separate faser: (1) Indgivelse af temozolomid til tumorbærende mus, (2) hele hjernen Bestråling af tumorbærende mus, (3) transfektion (4) splenektomi og T-celle Preparation (5 ) transduktion, (6) CAR T-celle kultur og Harvest, og (7) CAR T-celle administration til tumorbærende mus. Disse faser består af flere trin, der strækker sig 6-7 dage og udføres samtidig.

Protocol

Denne protokol er baseret på en eksperimentel design, hvor 10 mus behandles med 10 7 CAR T-celler hver. Det betyder, at der bliver brug 10 8 BIL T-celler; udbyttet skal være overvurderet med 5 x 10 7 -1 x 10 8 til grund for tab i levedygtighed. Følgende protokol er skaleret til at generere ca. 200 x 10 6 celler. Cellerne bliver derefter administreret intravenøst ​​til C57BL / 6-mus med ni dage etablerede syngene EGFRvlll-positive intrakranielle tumorer udvik…

Representative Results

CAR T-celler dannes ved transduktion med EGFRvlll CAR retrovirusvektor 11. Denne vektor, MSGV1, blev udviklet fra SFGtcLuc_ITE4 vektor 35, som indeholder den murine stamcelle virus (MSCV) lange terminale gentagelser, den udvidede gag regionen og kuvert splejsningssted (splejsningsdonor, SD, og splejsningsacceptor, SA), og viral emballage signal (ψ). Den EGFRvlll CAR indeholdende det humane anti-EGFRvlll variable fragment enkelt kæde (scFv) 139, i takt med murine CD8TM, CD28, 4-1BB og CD3ζ intrac…

Discussion

Behandlingen tidslinje beskrives her var designet til at modellere klinisk standard for pleje og udnytte dens virkninger for CAR adoptiv terapi. CAR T-celle doser TMZ regimer og strålebehandling indgivelse kan modificeres til at forøge in vivo T-celle-aktivitet, lymphodepletion og tumordrab. TMZ regimer kan øges til opnåelse vært myeloablation og øget udvidelse af adoptivt overførte celler 30. Endvidere kan lymphodepletive virkninger af TMZ blive sammenfattet af lav-dosis (4 – 6 Gy) single-fra…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Dr. Laura Johnson and Dr. Richard Morgan for providing the CAR retroviral construct. The authors also thank Giao Ngyuen for her assistance with dosimetry for whole brain irradiation. This work was supported by an NIH NCI grant 1R01CA177476-01.

Materials

Name of Material Company Catalog Number Comments/Description
pCL-Eco Retrovirus Packaging Vector Imgenex 10045P Helper vector for generating CAR retrovirus
Concanavalin A Sigma Aldrich C2010 Non-specific mitogen to induce T cell proliferation and viral transduction
Retronectin ClonTech/Takara T100B Facilitates retroviral transduction of T cells
Lipofectamine 2000 Life Technologies 11668-019 Transfection reagent
DMEM, high glucose, pyruvate Life technologies 11995-065 HEK293 culture media
RPMI 1640 Life Technologies 11875-093 T cell culture media
Opti-MEM I Reduced Serum Medium Life technologies 11058-021 Transfection media
200 mM L-Glutamine  Life technologies 25030-081 T cell culture media supplement
100 mM Sodium Pyruvate Life technologies 11360-070 T cell culture media supplement
100X MEM Non-Essential Amino Acids Solution  Life technologies 11140-050 T cell culture media supplement
55 mM 2-Mercaptoethanol  Life technologies 21985-023 Reducing agent to remove free radicals
Penicillin-Streptomycin (10,000 U/mL) Life technologies 15140-122 T cell culture media supplement
Gentamicin (50 mg/mL)  Life technologies 15750-060 T cell culture media supplement
GemCell U.S. Origin Fetal Bovine Serum Gemini Bio Products 100-500 Provides growth factors and nutrients for in vitro cell growth 
Bovine Serum Albumin (BSA), Fraction V—Standard Grade  Gemini Bio Products 700-100P Blocks non-specific binding of retrovirus to retronectin-coated plates
Pharm Lyse (10X concentrate)  BD Biosciences 555899 Lyses red blood cells during splenocyte processing
70 µm Sterile Cell Strainers Corning 352350 Filters away large tissue particles during splenocyte processing 
100 mm BioCoat Culture Dishes with Poly-D-Lysine  Corning 356469 Promotes HEK293 cell adhesion to maximize proliferation after transfection 
Temozolomide Best Pharmatech N/A Lyophilized powder prepared on the day of administration
Dimethyl Sulfoxide Sigma Life Sciences D2650 Necessary for complete dissolution of temozolomide
Saline Hospira IM 0132 (5/04) Solvent for temozolomide and ketamine/xylazine 
Ketathesia HCl Henry Schein Animal Health 11695-0701-1 Ketamine solution 
AnaSed Lloyd Inc N/A Xylazine sterile solution 100 mg/mL 

References

  1. Stupp, R., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352 (10), 987-996 (2005).
  2. Kantoff, P., Higano, C., Shore, N., Berger, E., Small, E. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. (363), 411-422 (2010).
  3. Hodi, F. S., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363 (8), 711-723 (2010).
  4. Schwartzentruber, D. J., et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 364 (22), 2119-2127 (2011).
  5. Gross, G., Gorochov, G., Waks, T., Eshhar, Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc. 21 (1 Pt 1), 127-130 (1989).
  6. Pule, M. A., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 14 (11), 1264-1270 (2008).
  7. Kochenderfer, J. N., et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 119 (12), 2709-2720 (2012).
  8. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 365 (8), 725-733 (2011).
  9. Brentjens, R. J., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 118 (18), 4817-4828 (2011).
  10. Wikstrand, C. J., et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 55 (14), 3140-3148 (1995).
  11. Sampson, J. H., et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 20 (4), 972-984 (2014).
  12. Kuppner, M. C., Hamou, M. F., Sawamura, Y., Bodmer, S., de Tribolet, N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg. 71 (2), 211-217 (1989).
  13. Wintterle, S., et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63 (21), 7462-7467 (2003).
  14. Fecci, P. E., et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66 (6), 3294-3302 (2006).
  15. Wilmotte, R., et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport. 16 (10), 1081-1085 (2005).
  16. Yang, B. C., et al. Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by fas signaling through a protein kinase A-independent pathway. Journal of Immunology. 171 (8), 3947-3954 (2003).
  17. Reilly, S. M., et al. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer. 29A (7), 940-942 (1993).
  18. Newcomb, E., et al. The Combination of Ionizing Radiation and Peripheral Vaccination Produces Long-term Survival of Mice Bearing Established Invasive GL261Gliomas. Clin Cancer Res. 12, 4730-4737 (2006).
  19. Park, B., Yee, C., Lee, K. M. The effect of radiation on the immune response to cancers. Int J Mol Sci. 15 (1), 927-943 (2014).
  20. Fritzell, S., et al. Intratumoral temozolomide synergizes with immunotherapy in a T cell-dependent fashion. Cancer Immunol Immunother. 62 (9), 1463-1474 (2013).
  21. Park, S. D., et al. Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine. 25 (17), 3485-3491 (2007).
  22. Emens, L. A., Jaffee, E. M. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res. 65 (18), 8059-8064 (2005).
  23. Murphy, K. A., et al. An in vivo immunotherapy screen of costimulatory molecules identifies Fc-OX40L as a potent reagent for the treatment of established murine gliomas. Clin Cancer Res. 18 (17), 4657-4668 (2012).
  24. Newcomb, E. W., et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res. 173 (4), 426-432 (2010).
  25. Su, Y. B., Krown, S. E., Livingston, P. O., Wolchok, J. D., Chapman, P. B. How lymphotoxic is dose-intensified temozolomide? The glioblastoma experience. J Clin Oncol. 23 (18), 4235-4236 (2005).
  26. Neyns, B., Tosoni, A., Hwu, W. J., Reardon, D. A. Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects. Cancer. 116 (12), 2868-2877 (2010).
  27. Muranski, P., et al. Increased intensity lymphodepletion and adoptive immunotherapy-how far can we go. Nat Clin Pract Oncol. 3 (12), 668-681 (2007).
  28. Wrzesinski, C., Restifo, N. P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Current Opinion in Immunology. 17 (2), 195-201 (2005).
  29. Dudley, M. E., et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 26 (32), 5233-5239 (2008).
  30. Sanchez-Perez, L. A., et al. Myeloablative Temozolomide Enhances CD8(+) T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice. Plos One. 8 (3), (2013).
  31. Su, Y. B., et al. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol. 22 (4), 610-616 (1200).
  32. Dummer, W., et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 110 (2), 185-192 (2002).
  33. Gattinoni, L., et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 202 (7), 907-912 (2005).
  34. Wrzesinski, C., et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 33 (1), 1-7 (2010).
  35. Hughes, M. S., et al. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther. 16 (4), 457-472 (2005).
  36. Morgan, R. A., et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 23 (10), 1043-1053 (2012).
  37. Kerkar, S. P., et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. J Immunother. 34 (4), 343-352 (2011).
check_url/kr/52397?article_type=t

Play Video

Cite This Article
Riccione, K., Suryadevara, C. M., Snyder, D., Cui, X., Sampson, J. H., Sanchez-Perez, L. Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care. J. Vis. Exp. (96), e52397, doi:10.3791/52397 (2015).

View Video