Summary

使用电生理评估功能,在啮齿动物的视网膜和远程肢体缺血预适应的保护作用

Published: June 09, 2015
doi:

Summary

The electroretinogram (ERG) is an electrical potential generated by the retina in response to light. This paper describes how to use the ERG to assess retinal function, in dark-adapted rats, and how it can be can be used to assess a neuroprotective intervention, in the present case remote ischemic preconditioning.

Abstract

The ERG is the sum of all retinal activity. The ERG is usually recorded from the cornea, which acts as an antenna that collects and sums signals from the retina. The ERG is a sensitive measure of changes in retinal function that are pan-retinal, but is less effective for detecting damage confined to a small area of retina. In the present work we describe how to record the ‘flash’ ERG, which is the potential generated when the retina is exposed to a brief light flash. We describe methods of anaesthesia, mydriasis and corneal management during recording; how to keep the retina dark adapted; electrode materials and placement; the range and calibration of stimulus energy; recording parameters and the extraction of data. We also describe a method of inducing ischemia in one limb, and how to use the ERG to assess the effects of this remote-from-the-retina ischemia on retinal function after light damage. A two-flash protocol is described which allows isolation of the cone-driven component of the dark-adapted ERG, and thereby the separation of the rod and cone components. Because it can be recorded with techniques that are minimally invasive, the ERG has been widely used in studies of the physiology, pharmacology and toxicology of the retina. We describe one example of this usefulness, in which the ERG is used to assess the function of the light-damaged retina, with and without a neuroprotective intervention; preconditioning by remote ischemia.

Introduction

ERG的是由视网膜响应于光产生的,并且从眼睛的角膜表面记录的电势。当记录条件精心管理,ERG的可以以各种不同的方式来评估视网膜功能被使用。在这里,我们介绍了如何记录“闪光ERG”,时产生的视网膜暴露在一个简短的,明亮的闪光在Ganzfeld背景呈现的潜力。该Ganzfeld分散的均匀光与光的闪光灯到达视网膜整体大致均匀。如果视网膜记录前暗适应和暗适应被保持为动物准备用于记录,ERG的获得是通过两个杆和视锥感光细胞生成的。

暗适应闪光ERG的具有特征的波形,这已在两个方面进行了分析。首先,ERG的波形的早期和晚期成分被区分开来,并与神经元的序人活化在视网膜上。最早的组件是一个短潜伏期负向电位的一个波( 图1)。这之后是一个正向电位,称为b波。 b波的上升阶段表示振荡,这被认为是一个单独的部件(振荡电位或有机磷)。在一个波被认为是由光感受器产生,b波由内核层细胞和有机磷由无长突细胞1。

根据刺激强度,反应非常昏暗闪烁称为暗门槛响应是可能的。暗视阈响应被理解为从视网膜神经节细胞2-4生成的。第二,闪光ERG可以通过光适应来分离,或通过两个闪光协议如下所述,成棒状和锥驱动的组件。明视下的条件下,一个波是在大鼠未检测到,因为锥体人口低,但有机磷和b波是明确5。在灵长类动物,其视网膜具有较高的人口锥,既杆状和锥途径产生可探测的一个波6。

常从闪速ERG提取两个有用措施是a-和b-波的振幅,测量为在图1中,与图2中所示的典型闪光的反应。当感光体人口被减少,例如通过暴露于破坏力亮光,ERG的所有成分减少。神经保护措施,如远程缺血预处理(RIP),可以由a-和b-波( 图3)的振幅的保存进行验证。综上所述,ERG的分析使得健康,光损伤和neuroprotected视网膜之间的比较。

Protocol

该协议遵循悉尼大学的动物护理准则。 1.制作电极构造正极(一个其将接触角膜)从铂丝直径1-2毫米的短(5厘米)的长度。时尚它变成一个循环的几个毫米的直径。这个环路连接到一个常规的引线,足够长的时间,以达到你放大器的输入级(参见图4)。 构造负极使用银/氯化银沉淀1-2毫米的直径,也连接到一个会议引线(这将在动物的嘴去)( <st…

Representative Results

该协议可以用于测量啮齿动物视网膜的体内视觉功能。在一个波,光感受器功能的量度,和b波,内视网膜功能的量度,被注释在图1中。 随光刺激的棒为主的ERG的信号增加时, 如图2A所示 。在〜0.4日志苏格兰人cd.sm -2和的一个波增加,直到饱和为2.5日志苏格兰人cd.sm振幅-2(未示出)的一个波变得很明显。双子闪光范式已经用于…

Discussion

上述的暗适应闪光ERG方法是评估在大鼠视网膜功能的可靠方法。两者的a波和b波被光伤害减少。远程缺血预处理减轻光损伤诱导的减少在一个波和B波。这种防护视网膜功能的建议,远程缺血性预处理已引起神经保护作用,类似其他形式的防护预处理,如缺氧,缺血和运动8-10。记录设置中,光刺激的参数,和动物的状态 – 记录ERG的信号是由三组因素来决定。

录像设置

<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢沙龙Spana夫人的鼠害监测,处理和试验的帮助。博士的资金支持已经由悉尼大学和澳大利亚研究中心卓越视觉提供的。

Materials

PC computer
Powerlab, 4 channel acquistion hardware AD Instruments PL 35044 Acquistion of ERG
Animal Bio Amp AD Instruments FE 136 Amplifier for ERG
Lab chart AD Instruments Signal collection software
Ganzfield Photometric solutions FS-250A Light stimulus
Ganzfield operating system Photometric solutions
Research Radiometer International light technologies ILT-1700 calibrate light series
Lux meter LX-1010B  check red light illumanation
Excel microsoft
Lead wires AD Instruments Connect postive, negative ground electrodes to amplifier
Lead wires -aligator AD Instruments ground ganzfield and acquistion hardware to computer
Platinum wire 95% A&E metals postive electrode
Mouth electrode Ag/AgCl Pellet SDR E205 negative electode
26 gauge needle BD ground electode
Water pump
Water bath
Tubing
Homeothermic blanket system with flexible probe Harvard Appartus 507222F
Atropine 1% w/v Bausch & Lomb topical mydriasis
Proxmethycaine 0.5% w/v Bausch & Lomb topical anaesthetic
Visco tears eye drops Novartis carbomer polymer
Thread retract eye lid
Tweezers
Reusable adhesive Blu tac Dim red headlamp. Affix electrodes
Absorbent bedding
Ketamil – ketamine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd dissociative
Xylium – Xylazine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd muscle relaxant
Scale

References

  1. Arden, G. B., Heckenlively, J. . Principles and practice of clinical electrophysiology of vision. , 139-183 (2006).
  2. Bui, B. V., Fortune, B. Ganglion cell contributions to the rat full-field electroretinogram. Journal of Physiology-London. 555 (1), 153-173 (2004).
  3. Fortune, B., et al. Selective ganglion cell functional loss in rats with experimental glaucoma. Investigative Ophthalmology & Visual Science. 45 (6), 1854-1862 (2004).
  4. Alarcon-Martinez, L., et al. Short and long term axotomy-induced ERG changes in albino and pigmented rats. Molecular Vision. 15 (254-255), 2373-2383 (2009).
  5. Lyubarsky, A. L., et al. Functionally rodless mice: transgenic models for the investigation of cone function in retinal disease and therapy. Vision Research. 42 (4), 401-415 (2002).
  6. Bush, R. A., Sieving, P. A. . A PROXIMAL RETINAL COMPONENT IN THE PRIMATE PHOTOPIC ERG A-WAVE. Investigative Ophthalmology & Visual Science. 35 (2), 635-645 (1994).
  7. Liu, K., et al. Development of the electroretinographic oscillatory potentials in normal and ROP rats. Investigative Ophthalmology & Visual Science. 47 (12), 5447-5452 (2006).
  8. Casson, R. J., Wood, J. P. M., Melena, J., Chidlow, G., Osborne, N. N. The effect of ischemic preconditioning on light-induced photoreceptor injury. Investigative Ophthalmology & Visual Science. 44 (3), 1348-1354 (2003).
  9. Lawson, E. C., et al. Aerobic Exercise Protects Retinal Function and Structure from Light-Induced Retinal Degeneration. Journal of Neuroscience. 34 (7), 2406-2412 (2014).
  10. Grimm, C., et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Medicine. 8 (7), 718-724 (2002).
  11. Weymouth, A. E., Vingrys, A. J. Rodent electroretinography: Methods for extraction and interpretation of rod and cone responses. Progress in Retinal and Eye Research. 27 (1), 1-44 (2008).
  12. Bayer, A. U., Cook, P., Brodie, S. E., Maag, K. P., Mittag, T. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Vision Research. 41 (17), 2173-2185 (2001).
  13. Pugh, E. N., Lamb, T. D. AMPLIFICATION AND KINETICS OF THE ACTIVATION STEPS IN PHOTOTRANSDUCTION. Biochimica Et Biophysica Acta. 1141 (2-3), 111-149 (1993).
  14. Breton, M. E., Schueller, A. W., Lamb, T. D., Pugh, E. N. ANALYSIS OF ERG A-WAVE AMPLIFICATION AND KINETICS IN TERMS OF THE G-PROTEIN CASCADE OF PHOTOTRANSDUCTION. Investigative Ophthalmology & Visual Science. 35 (1), 295-309 (1994).
  15. Mizota, A., Adachi-Usami, E. Effect of body temperature on electroretinogram of mice. Investigative Ophthalmology & Visual Science. 43 (12), 3754-3757 (2002).
  16. Szabo-Salfay, O., et al. The electroretinogram and visual evoked potential of freely moving rats. Brain Research Bulletin. 56 (1), 7-14 (2001).
  17. Charng, J., et al. Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats. Plos One. 8 (9), (2013).
  18. Galambos, R., Juhasz, G., Kekesi, A. K., Nyitrai, G., Szilagyi, N. NATURAL SLEEP MODIFIES THE RAT ELECTRORETINOGRAM. Proceedings of the National Academy of Sciences of the United States of America. 91 (11), 5153-5157 (1994).
  19. Galambos, R., Szabo-Salfay, O., Szatmar, E., Szilagyi, N., Juhasz, G. Sleep modifies retinal ganglion cell responses in the normal rat. Proceedings of the National Academy of Sciences of the United States of America. 98 (4), 2083-2088 (2001).
  20. Guarino, I., Loizzo, S., Lopez, L., Fadda, A., Loizzo, A. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plasticity. 11 (3-4), 241-250 (2004).
  21. Huang, J. C., Salt, T. E., Voaden, M. J., Marshall, J. NON-COMPETITIVE NMDA-RECEPTOR ANTAGONISTS AND ANOXIC DEGENERATION OF THE ERG B-WAVE IN-VITRO. Eye (London). 5 (4), 476-480 (1991).
  22. Sasovetz, D. . KETAMINE HYDROCHLORIDE – EFFECTIVE GENERAL ANESTHETIC FOR USE IN ELECTRORETINOGRAPHY. Annals of Ophthalmology. 10 (11), 1510-1514 (1978).
  23. Mojumder, D. K., Wensel, T. G. Topical Mydriatics Affect Light-Evoked Retinal Responses in Anesthetized Mice). Investigative Ophthalmology & Visual Science. 51 (1), 567-576 (2010).
  24. Fraunfel, F. t., Burns, R. P. ACUTE REVERSIBLE LENS OPACITY – CAUSED BY DRUGS, COLD, ANOXIA, ASPHYXIA, STRESS, DEATH AND DEHYDRATION. Experimental Eye Research. 10 (1), 19 (1970).
  25. Calderone, L., Grimes, P., Shalev, M. ACUTE REVERSIBLE CATARACT INDUCED BY XYLAZINE AND BY KETAMINE-XYLAZINE ANESTHESIA IN RATS AND MICE. Experimental Eye Research. 42 (4), 331-337 (1986).
  26. Behn, D., et al. Dark adaptation is faster in pigmented than albino rats. Documenta Ophthalmologica. 106 (2), 153-159 (2003).
  27. Sugawara, T., Sieving, P. A., Bush, R. A. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Experimental Eye Research. 70 (5), 693-705 (2000).
  28. Machida, S., et al. P23H rhodopsin transgenic rat: Correlation of retinal function with histopathology. Investigative Ophthalmology & Visual Science. 41 (10), 3200-3209 (2000).
  29. Brandli, A., Stone, J. Remote Ischemia Influences the Responsiveness of the Retina. Observations in the Rat. Investigative Ophthalmology & Visual Science. 55 (4), 2088-2096 (2014).
  30. Maccarone, R., Di Marco, S., Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Investigative Ophthalmology & Visual Science. 49 (3), 1254-1261 (2008).
  31. Hood, D. C., Birch, D. G. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: Applications and methods. Documenta Ophthalmologica. 92 (4), 253-267 (1996).
  32. Robson, J. G., Frishman, L. J. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Progress in Retinal and Eye Research. 39, 1-22 (2014).
  33. Hood, D. C., Birch, D. G. A COMPUTATIONAL MODEL OF THE AMPLITUDE AND IMPLICIT TIME OF THE B-WAVE OF THE HUMAN ERG. Visual Neuroscience. 8 (2), 107-126 (1992).
  34. Wachtmeister, L. Oscillatory potentials in the retina: what do they reveal. Progress in Retinal and Eye Research. 17 (4), 485-521 (1998).
check_url/kr/52658?article_type=t

Play Video

Cite This Article
Brandli, A., Stone, J. Using the Electroretinogram to Assess Function in the Rodent Retina and the Protective Effects of Remote Limb Ischemic Preconditioning. J. Vis. Exp. (100), e52658, doi:10.3791/52658 (2015).

View Video