Summary

从鼠耳和尾组织生成主成纤维细胞培养

Published: January 10, 2016
doi:

Summary

我们描述用于产生从耳朵和小鼠的尾部的成纤维细胞初级一个简单而快速的实验程序。该过程不需要特殊的动物训练和可用于成纤维细胞培养的产生从存储在RT至10天耳朵。

Abstract

原代细胞是直接从组织来源和被认为是更具有代表性的细胞在体内比建立的细胞系的生理状态。然而,原代细胞培养,通常具有有限的寿命,需要频繁重新建立。成纤维细胞是原代细胞的一个方便的来源。在这里,我们讨论一个简单而快速的实验程序,以建立从耳朵和老鼠尾巴初级成纤维细胞培养。该协议可以用于建立初级成纤维细胞培养从存储在RT至10天耳朵。当协议是经过精心接着,污染物是不太可能发生尽管使用储存延长的时间在某些情况下,非无菌的组织。成纤维细胞增殖迅速在培养和接受复制衰老之前可扩展到相当数量。

Introduction

主细胞来源于体外条件下活组织进行培养。它通常假设原代细胞更接近生理状态和其原始比永生化或肿瘤细胞系1的组织的遗传背景。出于这个原因,原代细胞代表用于研究生物学问题2,3的有用模型。然而,不同于无限增长建立的细胞系,原代细胞最终经历衰老中培养并需要经常重新建立。

常用的原代细胞包括成纤维细胞,上皮细胞,内皮细胞,T细胞,B细胞,骨髓衍生的巨噬细胞(BMDM)和骨髓来源的树突细胞(BMDC)。成纤维细胞通常用作原代细胞培养模型。它们提供超过其他初级细胞关键优势。细胞培养物容易建立,容易地维持和不需要purifica用前,培养细胞。他们有快速的初始扩散和专门的媒体或活化协议没有要求。成纤维细胞可以使用的生物,化学和物理协议4,5-有效地转染。有一种可能性,以存储耳朵之前建立的细胞培养物达10天室温。成纤维细胞培养有利于胞质突起的可视化和适于重新编程成诱导多能干细胞(iPS)6。

成纤维细胞是结缔组织的重要细胞分泌胶原蛋白和细胞外基质7。它们所提供的结构框架在许多组织8和播放在伤口愈合和组织修复9,10-必不可少的作用。

在这里,我们描述了一个简单而快速(<4小时)协议来建立从耳朵成纤维细胞培养和小鼠11尾。该协议需要最少的鼠标经验收获组织(相对于其它协议12,13),并且可以用于建立从存储在介质在RT至10天耳朵培养物。

Protocol

小鼠饲养在无病原体条件符合机构的指导方针,直到安乐死(机构动物护理和使用委员会(IACUC)的指导方针,在新加坡国立大学和国家咨询委员会的实验动物研究(NACLAR)的指导方针)。 1.鼠标订购一个鼠标适当的遗传背景。这个协议是基于组织从一个C57BL / 6小鼠衍生的。 2.准备完全培养基 10%胎牛血清(FCS),50μM2-巯基乙醇,100微米的天冬酰胺?…

Representative Results

来自组织的结果的成纤维细胞的一个显著量组织碎片的提取( 图1)。在对比组织碎片,纤维母细胞附着到1天,3培养的间组织培养塑料表面。成纤维细胞培养物的培养基可以安全地变更上培养,其中应显著减少在培养(图2)的碎片本水平的3天。的成纤维细胞显示的细长形态和一个清晰可见的细胞质(图1和2)。有丝分裂的细胞应该从培养的第3?…

Discussion

在这里,我们提供了一种简单,廉价且快速的实验步骤建立从耳朵和小鼠的尾巴初级成纤维细胞培养物。提取应导致粘附和迅速分裂成纤维细胞内后3天的隔离组织。原代细胞的一个重要的限制是衰老,一个永久生长停滞15。使用的协议,成纤维细胞培养可传代5-6次之前的成纤维细胞变得衰老,通过细胞的扁平化表示,尺寸增加(2-3倍增加)和故障扩大。

当执行的成纤…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the NRF grant HUJ-CREATE – Cellular and Molecular Mechanisms of Inflammation.

Materials

RPMI-1640 HyClone SH30027.01
Fetal Calf Serum HyClone SV30160.03
2-mercaptoethanol Sigma-Aldrich M3148
Asparagine Sigma-Aldrich A4159
Glutamine Sigma-Aldrich G8540
Penicillin/Streptomycin HyClone SV30010
Ethanol Merck Millipore 107017 Absolute for analysis
Collagenase D Roche Diagnostics 11088866001 From Clostridium histolyticum, lyophilized, non-sterile
Pronase protease Merck Millipore 53702 From Streptomyces griseus 
Tris buffer (pH 8) 1st BASE 1415 Ultra pure grade
0.5M EDTA (pH 8) 1st BASE BUF-1053 Biotechnology grade
10X Phosphate Buffered Saline (PBS) 1st BASE BUF-2040-10X4L Ultra pure grade
Trypsin-EDTA solution 10X Sigma-Aldrich 59418C-100ML 0.5% trypsin, 0.2% EDTA, trypsin gamma irradiated by SER-TAIN process, without phenol red, in saline
Amphotericin B Sigma-Aldrich A2492-20ml 250 μg/ml in deionized water, sterile-filtered
Scissors Aesculap
Forcep Aesculap AE-BD312R
0.2 μM syringe filter Sartorius Stedim 16534
70 μM cell strainer SPL 93070
Syringe plunger Terumo SS+10L
Cryovial tube NUNC 368362
1.7 ml microcentrifuge tube Axygen MCT-175-C
10 cm cell culture dish Greiner 664160 Cell culture treated dish 
15 ml conical bottom tube Greiner 188271
50 ml conical bottom tube Greiner 227261
Water bath GFL 1002
Centrifuge Eppendorf 5810R
Incubation shaker Sartorius Stedim Certomat-BS1
Zeiss Axiovert 25 light microscope Carl Zeiss AG

References

  1. Fitzpatrick, L. E., McDevitt, T. C. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci. 3 (1), 12-24 (2015).
  2. Elenbaas, B., et al. Human breast cancer cells generated by oncogenic transformation of primary epithelial cells. Genes Dev. 15 (1), 50-65 (2001).
  3. Stansley, B., Post, J., Hensley, K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation. 9 (1), 115 (2012).
  4. Lim, J., Dobson, J. Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field. J Genet. 91 (2), 223-227 (2012).
  5. Li, M., et al. High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther. 21 (11), 1527-1543 (2010).
  6. Patel, M., Yang, S. Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev. 6 (3), 367-380 (2010).
  7. Newman, A. C., Nakatsu, M. N., Chou, W., Gershon, P. D., Hughes, C. C. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell luman formation. Mol Biol Cell. 22 (20), 3791-3800 (2011).
  8. Ohlund, D., Elyada, E., Tuveson, D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 211 (8), 1503-1523 (2014).
  9. Guo, S., Dipietro, L. A. Factors affecting wound healing. J Dent Res. 89 (3), 219-229 (2010).
  10. Werner, S., Krieg, T., Smola, H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 127 (5), 998-1008 (2007).
  11. Shen, Y. J., et al. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep. 11 (3), 460-473 (2015).
  12. Seluanov, A., Vaidya, A., Gorbunova, A. Establishing primary adult fibroblast cultures from rodents. J Vis Exp. (44), (2010).
  13. Baglole, C. J., et al. Isolation and phenotypic characterization of lung fibroblasts. Methods Mol Med. 117, 115-127 (2005).
  14. Alt, E., et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell. 103 (4), 197-208 (2011).
  15. Kuilman, T., Michaloglou, C., Mooi, W. J., Peeper, D. S. The essence of senescence. Genes Dev. 24 (22), 2463-2479 (2010).
  16. Lander, M. R., Moll, B., Rowe, W. P. A procedure for culture of cells from mouse tail biopsies: brief communication. J Natl Cancer Inst. 60 (2), 477-478 (1978).
  17. Moore, C. B., Allen, I. C. Primary ear fibroblast derivation from mice. Methods Mol Biol. (1031), 65-70 (2013).
  18. Liu, J., et al. Generation of stable pluripotent stem cells from NOD mouse tail-tip fibroblasts. Diabetes. 60 (5), 1393-1398 (2011).
check_url/kr/53565?article_type=t

Play Video

Cite This Article
Khan, M., Gasser, S. Generating Primary Fibroblast Cultures from Mouse Ear and Tail Tissues. J. Vis. Exp. (107), e53565, doi:10.3791/53565 (2016).

View Video