Summary

Encapsulation of Cancer Therapeutic Agent Dacarbazine Using Nanostructured Lipid Carrier

Published: April 26, 2016
doi:

Summary

The most commonly used method for nanostructured lipid carrier (NLC) synthesis involves oil-in-water emulsion, homogenization and solidification. This was modified here by applying high shear dispersion after solidification to achieve a NLC with desirable size, improved drug encapsulation and drug loading efficiency as a potential carrier for dacarbazine delivery.

Abstract

The only formula of dacarbazine (Dac) in clinical use is intravenous infusion, presenting a poor therapeutic profile due to the low dispersity of the drug in aqueous solution. To overcome this, a nanostructured lipid carrier (NLC) consisting of glyceryl palmitostearate and isopropyl myristate was developed to encapsulate Dac. NLCs with controlled size were achieved using high shear dispersion (HSD) following solidification of oil-in-water emulsion. The synthesis parameters, including surfactant concentration, the speed and time of HSD were optimized to achieve the smallest NLC with size, polydispersion index and zeta potential of 155 ± 10 nm, 0.2 ± 0.01, and -43.4 ± 2 mV, respectively. The optimal parameters were also employed for Dac-loaded NLC preparation. The resultant NLC loaded with Dac possessed size, polydispersion index and zeta potential of 190 ± 10 nm, 0.2 ± 0.01, and -43.5 ± 1.2 mV, respectively. The drug encapsulation efficiency and drug loading reached 98% and 14%, respectively. This is the first report on encapsulation of Dac using NLC, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.

Introduction

Dacarbazine (Dac) is an alkylating agent that exerts anti-tumor activity through nucleic acids methylation or direct DNA damage, leading to cell cycle arrest and cell death 1.

As a first line chemotherapeutic agent, Dac has been used alone or in combination with other chemotherapy drugs for treating various cancers 2-6. It is the most active agent so far used in treating cutaneous and metastatic melanoma, which is the most aggressive form of skin cancer 3,7,8. The response rate, however, is only 20% at best, and the therapeutic effects are often accompanied with severe systemic side effects.

In its natural form, Dac is hydrophilic and is unstable due to its photosensitivity 9. The only available formula for clinical use currently is a sterile powder to be used in suspension for intravenous infusion 7,8. The low response rate and high systemic toxicity rate of the drug is largely attributable to its poor water solubility, therefore low availability at target site, and high distribution at non-target sites, which limits the maximum dose of the drug 10. The rapid degradation and metabolism after intravenous admission together with the development of drug resistance limit the clinical application and therapeutic effect of the drug 11. Therefore, there is an urgent need to develop alternative Dac formulations for treating malignant melanoma.

Colloidal systems containing liposomes, micelles or nanostructured particles have been intensively investigated for their use in drug delivery as reviewed by Marilene et al. 12 Nanostructured particles as potential drug carriers have been attracting increasing attention in the last decade due to their ability to increase drug loading efficiency, control drug release, improve drug pharmacokinetics and biodistribution, and therefore reduce drug systemic toxicity 13. Only a few nanoformulations, however, have been investigated so far for Dac delivery, showing protection of the drug from photo degeneration, increased drug solubility, and improved therapeutic effect 10,14,15. However these formulations suffered from low encapsulating efficiency while some also using synthetic polymer nanoparticles that are not cost effective.

Nanostructured lipid carriers (NLC), made of a mixture of solid and liquid lipids, have been developed for drug delivery 16,17. The drugs to be encapsulated are often soluble in both the liquid lipids and solid lipids phases 18, resulting in a high loading and controlled release 19. This study aims to develop a new Dac formulation based on NLC-encapsulation using glyceryl palmitostearate and isopropyl myristate as lipids. The preparation involved oil-in-water emulsion, evaporation, solidification, and homogenization. The preparations have been characterized for NLC size, shape, ultrastructure, and dispersity, drug encapsulation efficiency and drug loading 20.

Protocol

1. Preparation of Oil-in-water Emulsion Weigh glyceryl palmitostearate (120 mg), isopropyl myristate (60 mg), d-α-tocopheryl polyethylene glycol succinate (30 mg) and soybean lecithin (30 mg), and add them to 12.5 ml of organic solvents (6.25 ml acetone and 6.25 ml ethanol). Quickly dissolve the mixture at the temperature 70 °C (5 °C above the melting point of the solid lipid) in water bath. Add either 125, 250 or 375 mg of Poloxamer188 in 12.5 ml of ddH2O to achieve 1…

Representative Results

The preparations of the NLC and NLC-Dac using glyceryl palmitostearate and isopropyl myristate with different parameters were characterized for PS, PDI, morphology and ultrastructure 20. The PS and PDI of the NLCs were surfactant concentration, HSD speed and duration dependent. As judged by PS and PDI of the NLCs, the best results were achieved with 1% of surfactant and a sheer dispersion speed of 15,000 rpm for 30 min (Figure 1A, B and <strong…

Discussion

Lipid-based nanostructured particles have been utilized to provide a highly lipophilic carrier for delivery of hydrophobic drugs. A NLC is the second generation of solid lipid nanostructured carrier, which are solid at room and body temperature. The incorporation of a solid lipid into a liquid lipid in a NLC results in a less perfect crystallization, thus increasing the drug loading efficiency and also reducing the expulsion of encapsulated drugs during storage.

For NLC synthesis, the most com…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge the Saudi Arabia-funded scholarship (I821) for making the research possible. The authors are grateful to Dr Xianwei Liu for expert support in TEM analysis at Cranfield University.

Materials

Dacarbazine (DAC) Sigma Aldrich (Gillingham Dorset, UK) D2390-100MG drug used for uploading
glyceryl palmitostearate  Gattefossé (Saint_Priest_cédex, France) 85251-77-0 solid lipid 
d-α- Tocopherol polyethylene glycol succinate (TPGS) Sigma Aldrich (Gillingham Dorset, UK) 57668 lipid phase surfactant
Poloxamer 188 Sigma Aldrich (Gillingham Dorset, UK) 15759-1KG liqiud phase surfactant
Acetone  Sigma Aldrich (Gillingham Dorset, UK) 650501-1L organic solvent
Ethanol  Sigma Aldrich (Gillingham Dorset, UK) 459836-1L organic solvent
Soybean lecithin (SL) Cuisine Innovation (Dijon, France) SLL1402 lipid phase surfactant
Double-distilled water was collected in our laboratory from Millipore-Q Gradient A10 ultra-pure water system (Millipore, France) SAS – 67120  aqueous phase 
T 25 digital ULTRA-TURRAX IKA 3725000 as high shear disperser
Hotplate Magnetic Stirrer Scientific Support, Inc 1454  emulsion homogenization

References

  1. Loo, T. L., Housholder, G. E., Gerulath, A. H., Saunders, P. H., Farquhar, D. Mechanism of action and pharmacology studies with DTIC (NSC 45388). Cancer Treat Rep. 60 (2), 149-152 (1976).
  2. Behringer, K., et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): An open-label, randomised, non-inferiority trial. The Lancet. 385 (9976), 1418-1427 (2014).
  3. Carvajal, R. D., et al. A phase 2 randomised study of ramucirumab (IMC-1121B) with or without dacarbazine in patients with metastatic melanoma. Eur J Cancer. 50 (12), 2099-2107 (2014).
  4. Jiang, G., Li, R., Sun, C., Liu, Y., Zheng, J. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS ONE. 9 (12), (2014).
  5. Lazar, V., et al. Sorafenib plus dacarbazine in solid tumors: A phase i study with dynamic contrast-enhanced ultrasonography and genomic analysis of sequential tumor biopsy samples. Invest New Drugs. 32 (2), 312-322 (2014).
  6. Niemeijer, N. D., Alblas, G., Van Hulsteijn, L. T., Dekkers, O. M., Corssmit, E. P. M. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: Systematic review and meta-analysis. Clin Endocrinol (Oxf). 81 (5), 642-651 (2014).
  7. Bedikian, A. Y., Garbe, C., Conry, R., Lebbe, C., Grob, J. J. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: ‘The AGENDA trial’. Melanoma Res. 24 (3), 237-243 (2014).
  8. Daponte, A., et al. Phase III randomized study of fotemustine and dacarbazine versus dacarbazine with or without interferon-a in advanced malignant melanoma. J Trans Med. 11 (1), (2013).
  9. Jiao, J., Rhodes, D. G., Burgess, D. J. Multiple Emulsion Stability: Pressure Balance and Interfacial Film Strength. J Colloid Interface Sci. 250 (2), 444-450 (2002).
  10. Kakumanu, S., Tagne, J. B., Wilson, T. A., Nicolosi, R. J. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine. 7 (3), 277-283 (2011).
  11. Xie, T., Nguyen, T., Hupe, M., Wei, M. L. Multidrug resistance decreases with mutations of melanosomal regulatory genes. Cancer Res. 69 (3), 992-999 (2009).
  12. Estanqueiro, M., Amaral, M. H., Conceição, J., Lobo, J. M. S. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf., B. 126, 631-648 (2015).
  13. Koziara, J. M., Whisman, T. R., Tseng, M. T., Mumper, R. J. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Controlled Release. 112 (3), 312-319 (2006).
  14. Ding, B., et al. Biodegradable methoxy poly (ethylene glycol)-poly (lactide) nanoparticles for controlled delivery of dacarbazine: Preparation, characterization and anticancer activity evaluation. Afr J Pharm Pharacol. 5 (11), 1369-1377 (2011).
  15. Ding, B., et al. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int J Nanomedicine. 6, 1991-2005 (2011).
  16. Jenning, V., Thünemann, A. F., Gohla, S. H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 199 (2), 167-177 (2000).
  17. Müller, R. H., Radtke, M., Wissing, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 242 (1-2), 121-128 (2002).
  18. Pouton, C. W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 11 (Suppl. 2), S93-S98 (2000).
  19. Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Controlled Release. 95 (2), 217-227 (2004).
  20. Almousallam, M., Zhu, H. Encapsulation of cancer therapeutic agent dacarbazine using nanostructured lipid carrier. Int nano lett. , (2015).
  21. Ng, W. K., et al. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). BioMed Research International. , (2015).
  22. Sun, M., et al. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surf., B. 113, 15-24 (2014).
  23. Savla, R., Garbuzenko, O. B., Chen, S., Rodriguez-Rodriguez, L., Minko, T. Tumor-Targeted Responsive Nanoparticle-Based Systems for Magnetic Resonance Imaging and Therapy. Pharm Res. 31 (12), 3487-3502 (2014).
  24. Chen, Y., et al. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomedicine. 7, 3023 (2012).
  25. Sanna, V., Caria, G., Mariani, A. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of Econazole nitrate. Powder Technol. 201 (1), 32-36 (2010).
  26. Brigger, I., Dubernet, C., Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 54 (5), 631-651 (2002).
  27. Visaria, R. K., et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-a delivery. Mol Cancer Ther. 5 (4), 1014-1020 (2006).
  28. Tripathi, A., Gupta, R., Saraf, S. A. PLGA nanoparticles of anti tubercular drug: Drug loading and release studies of a water in-soluble drug. Int J PharmTech Res. 2 (3), 2116-2123 (2010).
  29. Joshi, M., Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 346 (1-2), 124-132 (2008).
  30. Lim, W. M., Rajinikanth, P. S., Mallikarjun, C., Kang, Y. B. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. Int J Nanomedicine. 9 (1), 2117-2126 (2014).
  31. Bei, D., Zhang, T., Murowchick, J. B., Youan, B. C. Formulation of dacarbazine-loaded cubosomes. Part III. physicochemical characterization. AAPS PharmSciTech. 11 (3), 1243-1249 (2010).
  32. Lei, M., et al. Dual drug encapsulation in a novel nano-vesicular carrier for the treatment of cutaneous melanoma: Characterization and in vitro/in vivo evaluation. RSC Advances. 5 (26), (2015).
check_url/kr/53760?article_type=t

Play Video

Cite This Article
Almoussalam, M., Zhu, H. Encapsulation of Cancer Therapeutic Agent Dacarbazine Using Nanostructured Lipid Carrier. J. Vis. Exp. (110), e53760, doi:10.3791/53760 (2016).

View Video