Summary

肠缺血再灌注损伤的小鼠模型

Published: May 11, 2016
doi:

Summary

这里,我们描述肠缺血再灌注的小鼠中的详细过程,这导致在重现的损伤而不死亡率鼓励跨字段这种技术的标准化。肠缺血再灌注损伤的该模型可用于研究损伤和再生的细胞和分子机制。

Abstract

肠缺血是具有广泛的临床病症,包括动脉粥样硬化,血栓形成,低血压,坏死性小肠结肠炎,肠移植,创伤和慢性炎症有关的威胁生命的情况。肠缺血再灌注(IR)的损伤为急性肠系膜缺血的结果,通过肠系膜血管引起的血流量不足,导致肠损伤。再灌注缺血可能进一步加剧肠道损伤。 IR损伤的机制是复杂的和理解甚少。因此,实验小动物模型是了解缺血再灌注损伤的病理生理和新疗法的发展至关重要。

这里,我们描述急性肠道IR损伤,提供了小肠的重现性损伤而不死亡率的小鼠模型。这是通过诱导缺血远端回肠的区域由在时间上的occludin实现克用微血管夹子60分钟肠系膜上动脉的周边和终端侧枝。再灌注1小时后,或在通过组织学分析研究了肠的可再现伤伤结果后2小时。微血管剪辑的正确位置的程序是至关重要的。因此,视频剪辑提供这一技术的详细目视一步一步的说明。肠IR损伤的该模型可用于研究损伤和再生的细胞和分子机制。

Introduction

肠道是引起缺血和上皮损伤的血流量的中断非常敏感。缺血再灌注提供了组织的复氧,并能进一步促进病理。因此,肠缺血再灌注损伤是具有广泛的病状,包括坏死性小肠结肠炎,在小肠移植同种异体移植物排斥,腹主动脉瘤手术,心肺旁路和炎性肠病1,2-并发症相关联。肠缺血再灌注损伤,尤其是急性肠系膜缺血,是造成发病率和死亡率3危及生命的疾病。

虽然了解甚少,肠缺血再灌注(IR)的损伤被认为是与肠道菌群的变化以及产生活性氧和炎性细胞因子和趋化因子1,4-6相关联。这导致在这两种激活内特和促进炎症和组织损伤1,7,8适应性免疫的机制。

动物模型对于理解IR损伤的机制的关键,因为它们允许容易GAIN-和失功能遗传实验。已开发红外几种动物模型,其中包括完整的血管闭塞,低流量缺血和分段血管闭塞(在最近的一次全面回顾总结9)。引起肠系膜上动脉(SMA)的完整的血管闭塞肠缺血是IR的大型动物和啮齿动物9-11一个简单而常用的模式。然而,肠道的不同区域有不同的易感性伤害。此外,各种不同的麻醉剂,镇痛药,动脉阻塞技术,以及在可变程度的损伤缺血性损伤和恢复结果的持续时间不一致混杂我们的红外跨多个studie的生物学的理解秒。 表1展示了在小鼠IR研究这些不一致。从使用较短的缺血时间(30-45分钟),最大的缺点是针对在可观察的病例与对照组之间差异明显复苏的窗口。轻度损伤的上皮可以解决再灌注后一小时,因此专门病理指标可能需要找到在上皮恢复原状的差异。与此相反,过大的损坏,由100分钟缺血损伤所看到可能导致上皮,恢复原状不再可能的完整denudement,增加死亡率,和恢复时间。因此,在这里我们描述肠道IR小鼠的详细程序导致重复性的伤害死亡率不鼓励在我们领域这一技术的标准化。肠IR损伤的该模型可用于研究损伤和再生的细胞和分子机制。

Protocol

动物研究按照健康准则全国学院进行,并由机构动物护理被批准,并使用特鲁多研究所委员会。 8-12周龄的C57BL / 6小鼠用于该研究。 1.准备手术准备和消毒手术器械。 制备基于异氟醚麻醉系统的鼻锥,并加热垫。确保加热垫不会过热(<39℃)。 确保异氟烷气体清除罐被正确地定位,以确保排气口在所述罐的底部不被堵塞或以任何方式闭塞。称重之前对…

Representative Results

我们优化的IR手术的实验方案获得小鼠回肠的重现性IR损伤的作用。代表性的结果证明了在此部分。 图1示出微血管剪辑位置的例子以诱导回肠的缺血。黑色箭头显示夹闭肠系膜上动脉一级分支的主要片段的位置。绿色箭头表示的附加片段的位置,以阻止来自侧支血管的血液供应。注意闭塞血管远端片段位置和intest…

Discussion

肠道缺血再灌注损伤的小鼠模型的发展大大提高了组织损伤机制的理解和潜在的治疗策略的发展援助,以尽量减少组织损伤7,9,11,34。此协议的关键步骤是微血管剪辑的正确定位,缺血再灌注损伤的缺血和适当的组织学评价的正确时机。

缺血的持续时间是为后续上皮损伤是至关重要的。以诱导可重复的IR损伤无发病率和实验小鼠的死亡率通常所需的时间是45-60分钟,随?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

是由俄罗斯科学基金会支持这项工作,不授予。 14-50-00060和LLC RUSCHEMBIO。这项工作也是由美国Crohn`s和结肠炎基金会授予294083(至AVT),由美国国立卫生研究院授予RO1 DK47700(CJ到)的支持。

Materials

Heated Pad Sunbeam E12107-819 Alternative: Braintree Scientific heated pad
Table top research anesthesia Machine Vasco UCAP 0001-0000171 Alternative: Parkland Scientific, V3000PS
Nose Cone Parkland Scientific ARES500
Scavenger canister and replacement cartridge Parkland Scientific 80000, 80120
Induction Chamber Surgivet V711802
Isoflurane Piramal Healthcare NDC 66794-013-10 Controlled substance, contact IACUC
Animal clipper  Oster  Oster Golden A5 078005-050-003
Ophthalmic ointment Webster 8804604
Buprenorphine McKesson 562766 Controlled substance,contact IACUC
Ketaset (Ketamine HCl) Pfizer NADA 45-290 Controlled substance, contact IACUC
Cotton tips Puritan medical products 806-WC Autoclave before use
Betadine Purdue Products 67618-150-17 10% Povidone-Iodine
Sterile saline solution Aspen 46066-807-60 Adjust to room temperature before use
Sterile cotton gauze pad Fisher Healthcare 22-415-468
Non-adherent pad prepack Telfa 1238
IR rodent thermometer BIOSEB BIO-IRB153
Micro vascular clips, 70g Roboz Surgical  RS5424, RS5435 Alternative: WPI 14121, for SMA occlusion
Micro vascular clips, 40g Roboz Surgical  RS6472 Alternative:WPI 14120, for collateral vessels occlusion
Clip applying forceps World Precision Instruments 14189 Alternative: Roboz #RS-5410 or  #RS-5440
Gill's 3 hematoxylin Thermo Scientific 14-390-17
Surgical staples, Reflex 9 mm Cell Point Scientific 201-1000
Autoclip applier Beckton Dickinson 427630
Byopsy foam pad Simport M476-1
Tissue cassette Fisher Healthcare 15182701A Histosette II combination lid and base
10% buffered formalin Fisher Scientific 245-684
Surgical iris scissors World Precision Instruments 501263-G SC Alternative: Roboz RS6816
Operating scissors World Precision Instruments 501219-G Alternative: Roboz RS6814
Dressing forceps Roboz Surgical  RS-5228, RS-8122 Alternative: World Precision Instruments 1519-G
Heparin, endotoxin free, 300 USP units/vial, 50mg Sigma 2106
Reflex wound clip removing forceps Roboz Surgical  RS-9263 Alternative: World Precision Instruments: 500347
Mice C57BL/6J mice  Jackson Laboratory Stock No 0664
Telfa non-adherent dressings, 3×4, sterile Coviden 1050

References

  1. Eltzschig, H. K., Eckle, T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 17, 1391-1401 (2011).
  2. Lenaerts, K., et al. New insights in intestinal ischemia-reperfusion injury: implications for intestinal transplantation. Curr Opin Organ Transplant. 18, 298-303 (2013).
  3. Yasuhara, H. Acute mesenteric ischemia: the challenge of gastroenterology. Surg Today. 35, 185-195 (2005).
  4. Perez-Chanona, E., Muhlbauer, M., Jobin, C. The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. Am J Pathol. 184, 2965-2975 (2014).
  5. Lee, H., et al. Delineating the relationships among the formation of reactive oxygen species, cell membrane instability and innate autoimmunity in intestinal reperfusion injury. Mol Immunol. 58, 151-159 (2014).
  6. Yoshiya, K., et al. Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 301, G1020-G1030 (2011).
  7. Wu, M. C., et al. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc Natl Acad Sci U S A. 110, 9439-9444 (2013).
  8. Muhlbauer, M., Perez-Chanona, E., Jobin, C. Epithelial cell-specific MyD88 signaling mediates ischemia/reperfusion-induced intestinal injury independent of microbial status. Inflamm Bowel Dis. 19, 2857-2866 (2013).
  9. Gonzalez, L. M., Moeser, A. J., Blikslager, A. T. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol. 308, G63-G75 (2015).
  10. Megison, S. M., Horton, J. W., Chao, H., Walker, P. B. A new model for intestinal ischemia in the rat. J Surg Res. 49, 168-173 (1990).
  11. Goldsmith, J. R., et al. Intestinal epithelial cell-derived mu-opioid signaling protects against ischemia reperfusion injury through PI3K signaling. Am J Pathol. 182, 776-785 (2013).
  12. Cuzzocrea, S., et al. Glycogen synthase kinase-3beta inhibition attenuates the development of ischaemia/reperfusion injury of the gut. Intensive Care Med. 33, 880-893 (2007).
  13. Farber, A., et al. A specific inhibitor of apoptosis decreases tissue injury after intestinal ischemia-reperfusion in mice. J Vasc Surg. 30, 752-760 (1999).
  14. Ben, D. F., et al. TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J Surg Res. 174, 326-333 (2012).
  15. Watson, M. J., et al. Intestinal ischemia/reperfusion injury triggers activation of innate toll-like receptor 4 and adaptive chemokine programs. Transplant Proc. 40, 3339-3341 (2008).
  16. Watanabe, T., et al. Activation of the MyD88 signaling pathway inhibits ischemia-reperfusion injury in the small intestine. Am J Physiol Gastrointest Liver Physiol. 303, G324-G334 (2012).
  17. Murayama, T., et al. JNK (c-Jun NH2 terminal kinase) and p38 during ischemia reperfusion injury in the small intestine. Transplantation. 81, 1325-1330 (2006).
  18. Park, P. O., Haglund, U., Bulkley, G. B., Falt, K. The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery. 107, 574-580 (1990).
  19. Jilling, T., Lu, J., Jackson, M., Caplan, M. S. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr Res. 55, 622-629 (2004).
  20. Aprahamian, C. J., Lorenz, R. G., Harmon, C. M., Dimmit, R. A. Toll-like receptor 2 is protective of ischemia-reperfusion-mediated small-bowel injury in a murine model. Pediatr Crit Care Med. 9, 105-109 (2008).
  21. Tatum, P. M., Harmon, C. M., Lorenz, R. G., Dimmitt, R. A. Toll-like receptor 4 is protective against neonatal murine ischemia-reperfusion intestinal injury. J Pediatr Surg. 45, 1246-1255 (2010).
  22. Fleming, S. D., et al. Anti-phospholipid antibodies restore mesenteric ischemia/reperfusion-induced injury in complement receptor 2/complement receptor 1-deficient mice. J. Immunol. 173, 7055-7061 (2004).
  23. Fleming, S. D., et al. Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J. Immunol. 169, 2126-2133 (2002).
  24. Lapchak, P. H., et al. Platelets orchestrate remote tissue damage after mesenteric ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol. 302, G888-G897 (2012).
  25. Rehrig, S., et al. Complement inhibitor, complement receptor 1-related gene/protein y-Ig attenuates intestinal damage after the onset of mesenteric ischemia/reperfusion injury in mice. J. Immunol. 167, 5921-5927 (2001).
  26. Hoffman, S. M., Wang, H., Pope, M. R., Fleming, S. D. Helicobacter infection alters MyD88 and Trif signalling in response to intestinal ischaemia-reperfusion. Exp Physiol. 96, 104-113 (2011).
  27. Moses, T., Wagner, L., Fleming, S. D. TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. J Leukoc Biol. 86, 971-980 (2009).
  28. Feinman, R., et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 299, G833-G843 (2010).
  29. Lapchak, P. H., et al. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury. PloS one. 7, e39934 (2012).
  30. Wen, S. H., et al. Ischemic postconditioning during reperfusion attenuates intestinal injury and mucosal cell apoptosis by inhibiting JAK/STAT signaling activation. Shock. 38, 411-419 (2012).
  31. Wang, F., et al. Temporal variations of the ileal microbiota in intestinal ischemia and reperfusion. Shock. 39, 96-103 (2013).
  32. Zou, L., Attuwaybi, B., Kone, B. C. Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 284, G713-G721 (2003).
  33. Hassoun, H. T., et al. Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 282, G1059-G1068 (2002).
  34. Stallion, A., et al. Ischemia/reperfusion: a clinically relevant model of intestinal injury yielding systemic inflammation. J Pediatr Surg. 40, 470-477 (2005).
  35. Blikslager, A. T., Roberts, M. C., Rhoads, J. M., Argenzio, R. A. Is reperfusion injury an important cause of mucosal damage after porcine intestinal ischemia?. Surgery. 121, 526-534 (1997).
  36. Barker, N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449, 1003-1007 (2007).
  37. Victoni, T., et al. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med Microbiol Immunol. 199, 35-42 (2010).
  38. Watanabe, T., et al. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice. PloS one. 9, e110441 (2014).
  39. Pope, M. R., Fleming, S. D. TLR2 modulates antibodies required for intestinal ischemia/reperfusion-induced damage and inflammation. J. Immunol. 194, 1190-1198 (2015).
  40. Leung, F. W., Su, K. C., Passaro, E., Guth, P. H. Regional differences in gut blood flow and mucosal damage in response to ischemia and reperfusion. Am J Physiol. 263, G301-G305 (1992).
  41. Chiu, C. J., McArdle, A. H., Brown, R., Scott, H. J., Gurd, F. N. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 101, 478-483 (1970).
  42. Quaedackers, J. S., et al. An evaluation of methods for grading histologic injury following ischemia/reperfusion of the small bowel. Transplant Proc. 32, 1307-1310 (2000).
  43. Bianciardi, P., Scorza, R., Ghilardi, G., Samaja, M. Xanthine oxido-reductase activity in ischemic human and rat intestine. Free Radic Res. 38, 919-925 (2004).
  44. Yandza, T., et al. The pig as a preclinical model for intestinal ischemia-reperfusion and transplantation studies. J Surg Res. 178, 807-819 (2012).

Play Video

Cite This Article
Gubernatorova, E. O., Perez-Chanona, E., Koroleva, E. P., Jobin, C., Tumanov, A. V. Murine Model of Intestinal Ischemia-reperfusion Injury. J. Vis. Exp. (111), e53881, doi:10.3791/53881 (2016).

View Video