Summary

干细胞基工程免疫抗HIV感染的人性化小鼠模型

Published: July 02, 2016
doi:

Summary

This protocol describes the methods in constructing a humanized bone-marrow/liver/thymus mouse model with stem cell-based engineered immunity against HIV infection.

Abstract

与基于细胞干基因疗法的快速发展对抗HIV,有迫切要求的用于动物模型来研究所述遗传修饰的细胞的造血细胞分化和免疫功能。人源化的骨髓/肝脏/胸腺(BLT)小鼠模型允许在周围的人的免疫系统,其包括T细胞,B细胞,NK细胞和单核细胞的完整的重建。人胸腺植入物还允许在自体胸腺组织的T细胞的胸腺选择。除了感染艾滋病毒的研究中,模型矗立作为一个强大的工具来研究造血干细胞(HSCs)的细胞的分化,发育和功能。在这里,我们勾勒出人性化的非肥胖型糖尿病(NOD)的建设-严重联合免疫缺陷病(SCID)中的常见γ链基因敲除(Cγ – / – )-Bone骨髓/肝脏/胸腺(NSG-BLT)小鼠造血干细胞转导与CD4嵌合抗原受体(CD4CAR)慢病毒载体。我们表明,CD4CAR造血干细胞可以成功地分化成多种谱系,并有抗HIV活性。该研究的目的是说明使用NSG-BLT小鼠模型的作为抗HIV工程化免疫的体内模型。值得注意的是,因为慢病毒和人体组织时,实验和手术应该在II级生物安全柜与特殊的预防措施(BSL2 +)设施执行在生物安全等级2(BSL2)。

Introduction

尽管联合抗逆转录病毒治疗的成功,HIV感染仍然是一个终身疾病。抗HIV细胞免疫反应在控制HIV复制非常重要的作用。在干细胞处理的最新进展已经允许基因治疗的飞速发展途径HIV治疗1-3。其结果是,它有一个适当的动物模型,它允许抗HIV基于细胞的疗法的效力的体内研究是非常重要的。

在动物模型中与HIV的工作是由一个事实,即病毒只感染人类细胞复杂。为了规避这一限制,科学家们开始借助疾病模型像猕猴4,5猴免疫缺陷病毒(SIV)。不幸的是,在此模型中,由于跨物种的固有差异和SIV和HIV之间的差异主要限制。此外,只有高度专业化的设施是C支持工作,非人类灵长类动物,每个猕猴apable需要大量的投资。因此,为模型中的迫切需要,利用人的免疫系统,这是易受HIV感染/发病机制,并且是较少财政望而却步。

非肥胖糖尿病(NOD) -严重联合免疫缺陷(SCID)-commonγ链基因敲除(三γ – / – )(或NSG)血液/肝脏/胸腺(BLT)的人源化小鼠模型日益被证明是一个重要的工具以研究艾滋病病毒感染。通过注入的造血干细胞(HSC)以及胎胸腺,小鼠能够开发和概括一个人免疫系统1-3。基于干细胞的基因治疗的一种类型涉及'重定向'的外周T细胞重新编程造血干细胞(HSC)能够分化为抗原特异性T细胞为目标的HIV。我们以前曾表明,工程造血干细胞与分子克隆抗HIV特异性T细胞再受体(TCR)对抗原SL9(氨基酸77-85; SLYNTVATL)HIV-1的Gag可以干细胞重定向到形成的抑制人性化的NSG-BLT小鼠模型6 HIV复制成熟T细胞。使用分子克隆的TCR的需要注意的是,它被限制为特定的人白细胞抗原(HLA)亚型,这将限制这种疗法的应用。嵌合抗原受体(CAR),另一方面,可普遍适用于所有的HLA亚型。进行最初的研究利用具有融合于细胞内ζ信令的CD3域人CD4的细胞外和跨膜结构域构成的汽车(称为CD4ζCAR)。 CD4ζCAR上的CD8 T细胞上表达能够识别HIV包膜并引发细胞毒性T细胞应答是类似于由T细胞受体7介导的。我们最近证明人肝星状细胞可以与CD4ζCAR,然后可以分化成多种造血里进行修改neages,包括能够抑制在人源化小鼠模型8 HIV复制的功能的T细胞。在嵌合抗原受体疗法的快速进步癌症9,和有效的宽的中和抗体10-12抗HIV,允许单链抗体车的结构的持续表征,它是可感知的,许多新的候选构建体,除了CD4ζCAR ,将产生与艾滋病毒和其他疾病的干细胞基于基因疗法试验。另外,含有这些抗原特异性的CARs人源化NSG-BLT小鼠模型也可提供一个有用的工具仔细检查体内人T细胞应答。重要的是,我们的协议不同于先前描述的结构的人源化的BLT小鼠13-15在于,造血干细胞在胶状蛋白质混合物代替胎肝中继线16的使用方法。本协议描述:1)humani建设与CD4ζCAR工程捷思BLT小鼠;和2)的遗传修饰的细胞的分化的表征;和3)的经遗传修饰的细胞的功能性表征。

Protocol

伦理声明:人类胎儿组织是从高级Biosciences的资源或从Novogenix获得并未经识别信息,不需要为它的使用的IRB批准得到。在这个手稿中描述的动物研究是加州大学洛杉矶分校和分校(UCLA)的动物研究委员会(ARC)的按照所有联邦,州和地方的指导方针书面同意下进行。具体来说,这些研究是在严格按照该指南的关怀和全国研究委员会实验动物的使用和认可,并为实验动物的评估和认可?…

Representative Results

图1显示了构建具有修饰的干细胞源化的BLT小鼠的轮廓。植入手术10周后,处死小鼠,以评估基因修饰细胞的分化和发育。 如图2中所示,多个淋巴组织(血液,脾,胸腺和骨髓)中从使用CD4ζCAR改性的小鼠收获。在这个协议中使用的CD4ζCAR包含可由抗CD4抗体和GFP 8的表达进行检测的CD4嵌合抗原受体和GFP。细胞分离并用抗人CD45抗体,以及抗CD4…

Discussion

与汽车和走向临床研究基于HSC工程免疫力蓄势待发,它有一个合适的动物模型来仔细研究这些工程细胞的分化和功能是非常重要的。在这个协议中,我们描述的构建和测试与设计的抗HIV基因修饰的干细胞小鼠人性化的方法。有前移植干细胞的有效转导是重要的。然而,由于T细胞在识别靶细胞增殖的能力,干细胞修饰的低含量足以产生针对HIV复制8健壮响应。

然而,要?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Ms. Jessica Selander in providing artistic assistant in making our figures. This work was funded by grants from the NIAID/NIH, grant no. RO1AI078806, the UCLA Center for AIDS Research (CFAR), grant no. P30AI28697, the California Institute for Regenerative Medicine, grant no. TR4-06845, the American Federation for AIDS Research (amfAR), grant no. #108929-54-RGRL, and the UC Multi-campus Research Program and Initiatives, California Center for Antiviral Drug discovery (CCADD)

Materials

CD34 microbead kit miltenyi 130-046-702 For sorting human CD34+ progenitor cells
Bambanker Wako 302-14681 for freezing cells
QIAamp Viral RNA kit  Qiagen 52904 For measuring viral load in the serum
MACSQuant Flow Cytometer Miltenyi For flow analysis
BD LSRFortessa™ BD biosciences For flow analysis
Hyaluronidase Sigma H6254-500MG  For tissue digestion
Deoxyribonuclease I       Worthington LS002006  for tissue digestion
Collagenase Life technology 17104-019  for tissue digestion
CFX Real time PCR detection system Biorad For measuring viral load and gene expression
Mice, strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ The Jackson Laboratory 5557 For constructing the humanized mice
Penicillin Streptomycin (Pen Strep) Thermo Fisher Scientific 10378016 For culturing cells
piperacillin/tazobactam Pfizer Zosyn Anti-fungal
Amphotericin B (Fungizone antimycotic) Thermo Fisher Scientific 15290-018 Anti-fungal
AUTOCLIP Wound Clips, 9 mm – 1000 units     Becton Dickinson 427631  For surgery
Sterile Poly-Reinforced Aurora Surgical Gowns, 30 per case       Medline DYNJP2707  For surgery
sutures, 4-0, vicryl           Owens and Minor 23000J304H   For surgery
Alcohol prep pads           Owens and Minor 3583006818 For surgery
Gloves, surgical, 6 1/2 Owens and Minor 4075711102 For surgery
Yssel’s Serum-Free T-Cell Medium Gemini Bio-products 400-102 For CD34+ cell transduction
Human Serum Albumin  Sigma-Aldrich A9511 For CD34+ cell transduction

References

  1. Karpel, M. E., Boutwell, C. L., Allen, T. M. BLT humanized mice as a small animal model of HIV infection. Current opinion in virology. 13, 75-80 (2015).
  2. Zhen, A., Kitchen, S. Stem-cell-based gene therapy for HIV infection. Viruses. 6 (1), 1-12 (2014).
  3. Goulder, P. J. R., Watkins, D. I. HIV and SIV CTL escape: implications for vaccine design. Nature Reviews: Immunology. 4 (8), 630-640 (2004).
  4. Kitchen, S. G., Bennett, M., et al. Engineering Antigen-Specific T Cells from Genetically Modified Human Hematopoietic Stem Cells in Immunodeficient Mice. PloS one. 4 (12), e8208 (2009).
  5. Goulder, P. J. R., Watkins, D. I. HIV and SIV CTL escape: implications for vaccine design. Nature Reviews: Immunology. 4 (8), 630-640 (2004).
  6. Kitchen, S. G. S., Levin, B. R. B., et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathogens. 8 (4), e1002649 (2012).
  7. Yang, O. O., Tran, A. C., Kalams, S. A., Johnson, R. P., Roberts, M. R., Walker, B. D. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. PNAS. 94 (21), 11478-11483 (1997).
  8. Zhen, A., Kamata, M., et al. HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells. Molecular Therapy. 23 (8), 1358-1367 (2015).
  9. Barrett, D. M., Singh, N., Porter, D. L., Grupp, S. A., June, C. H. Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine. 65 (1), 333-347 (2014).
  10. Pejchal, R., Doores, K. J., et al. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science. 334 (6059), 1097-1103 (2011).
  11. Caskey, M., Klein, F., et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 522 (7557), 487-491 (2015).
  12. West, A. P., Scharf, L., Scheid, J. F., Klein, F., Bjorkman, P. J., Nussenzweig, M. C. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell. 156 (4), 633-648 (2014).
  13. Lan, P., Tonomura, N., Shimizu, A., Wang, S., Yang, Y. -. G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 108 (2), 487-492 (2006).
  14. Melkus, M. W., Estes, J. D., et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nature medicine. 12 (11), 1316-1322 (2006).
  15. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nature Reviews: Immunology. 12 (11), 786-798 (2012).
  16. Vatakis, D. N., Bristol, G. C., et al. Using the BLT humanized mouse as a stem cell based gene therapy tumor model. Journal of visualized experiments : JoVE. (70), e4181 (2012).
  17. De Rosa, S. C., Brenchley, J. M., Roederer, M. Beyond six colors: a new era in flow cytometry. Nature medicine. 9 (1), 112-117 (2003).
  18. Shimizu, S., Hong, P., et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 115 (8), 1534-1544 (2010).
  19. Denton, P. W., Olesen, R., et al. Generation of HIV latency in humanized BLT mice. Journal of virology. 86 (1), 630-634 (2012).
  20. Zhou, J., Zhang, Y., et al. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. Journal of Genetics and Genomics. 37 (7), 451-460 (2010).
  21. Vatakis, D. N., Arumugam, B., Kim, S. G., Bristol, G., Yang, O., Zack, J. A. Introduction of Exogenous T-cell Receptors Into Human Hematopoietic Progenitors Results in Exclusion of Endogenous T-cell Receptor Expression. Molecular Therapy. 21 (5), 1055-1063 (2013).
  22. Ito, R., Takahashi, T., Katano, I., Ito, M. Current advances in humanized mouse models. Cellular & Molecular Immunology. 9 (3), 208-214 (2012).
  23. Martinez-Torres, F., Nochi, T., Wahl, A., Garcia, J. V., Denton, P. W. Hypogammaglobulinemia in BLT humanized mice–an animal model of primary antibody deficiency. PloS one. 9 (10), e108663 (2014).
  24. McCune, J. M. Development and applications of the SCID-hu mouse model. Seminars in Immunology. 8 (4), 187-196 (1996).
  25. Srivastava, S., Riddell, S. R. Engineering CAR-T Cells: Design Concepts. Trends in immunology. 36 (8), (2015).
check_url/kr/54048?article_type=t

Play Video

Cite This Article
Zhen, A., Rezek, V., Youn, C., Rick, J., Lam, B., Chang, N., Zack, J., Kamata, M., Kitchen, S. Stem-cell Based Engineered Immunity Against HIV Infection in the Humanized Mouse Model. J. Vis. Exp. (113), e54048, doi:10.3791/54048 (2016).

View Video