Summary

代和GM-CSF的鉴定源性肺泡状巨噬细胞和树突状细胞从小鼠骨髓

Published: June 25, 2016
doi:

Summary

Bone marrow cells cultured with granulocyte macrophage colony stimulating factor (GM-CSF) generate a heterogeneous culture containing macrophages and dendritic cells (DCs). This method highlights using MHCII and hyaluronan (HA) binding to differentiate macrophages from the DCs in the GM-CSF culture. Macrophages in this culture have many similarities to alveolar macrophages.

Abstract

巨噬细胞和树突状细胞(DC)是在组织和淋巴器官发挥抵御病原体是重要角色发现先天免疫细胞。然而,它们难以在足够数量的分离,以研究它们的详细,因此, 在体外模型已经制定出来。 体外骨髓来源的巨噬细胞和树突状细胞的培养物用于免疫学研究成熟的和有价值的方法。这里,描述了用于培养和使用该细胞因子粒细胞巨噬细胞集落刺激因子(GM-CSF)的原代小鼠骨髓细胞的单培养识别两者的DC和巨噬细胞的方法。此协议是基于首先由Lutz 等人开发的既定程序。在1999年的骨髓来源的DC。培养是异质的,并且MHCII和荧光标记的透明质酸(FL-HA)是用来区分未成熟和成熟DC的巨噬细胞。这些GM-CSF巨噬细胞亲韦迪体外衍生的巨噬细胞可以非常类似于在两个表型和功能肺泡巨噬细胞的一个方便的来源。

Introduction

几个体外培养的方法已被描述,以产生骨髓来源的巨噬细胞(BMDMs),并使用一种或生长因子的组合骨髓衍生的DC(DC培养上清)。 BMDMs可以通过使用细胞巨噬细胞集落刺激因子(M-CSF)或GM-CSF 1,2-培养骨髓细胞生成。为DC培养上清,加入FLT3配体与骨髓培养产生了非粘附经典和浆的DC(CD11c的 / MHCII 和CD11c的LO,B220分别+)后的培养3,4- 9天。与此相反,后7至10天在培养与单独的GM-CSF 5,6-产生的非贴壁细胞,GM-CSF和IL-4 7,或GM-CSF和FLT3配体8,9-生成的BMDCs更密切类似的炎症的DC (CD11c的 MHCII +细胞CD11b)10。而这些在体外培养物被用于产生巨噬细胞或区议会,目前还不清楚,如果每一种文化产生了纯洁的人群。例如,虽然在GM-CSF培养贴壁细胞被描述为巨噬细胞5中 ,从相同的培养非粘附细胞用作树突6,11-13,与推定它们是均匀和任何观察到的变异性是由于发展14,15的不同阶段。此外,研究发现GM-CSF是用于体内 16,17肺泡巨噬细胞发展的一个重要的生长因子,并可以在体外用于生成肺泡状巨噬细胞16,17,18。

除了坚持,从GM-CSF治疗骨髓的文化产生巨噬细胞和DC的过程非常相似的异质性暗示可能GM-CSF骨髓文化中存在。这确实似乎是的情况下为两个论文报告BMDMs在BMDC培养物的非粘附部分的存在。在一个论文中,他们identifi编细胞的CD11c +,CD11b+ MHCII 中旬 ,MERTK +和CD115 +,它表示最密切相似肺泡巨噬细胞,不得不激活T细胞19的能力下降的基因表达特征的群体。使用MHCII和FL-HA的第二个文件,以便找出一个肺泡巨噬细胞样的人口(的CD11c +,MHCII 中/低 ,FL-HA 高点 ),这是由不成熟的不同(的CD11c +,MHCII 中旬 ,FL-HA 低点 )和成熟的DC(CD11c的+,MHCII ),这两个表型和功能18。这些论文都表明,GM-CSF BMDC文化是异质的,含有巨噬细胞和DC群表示从BMDC文化解读数据时,应采取照顾。

这个协议描述如何分离骨髓,培养骨髓细胞在GM-CSF,以及识别肺泡巨噬细胞样人口由在骨髓培养未成熟和成熟DC通过流式细胞术采用FL-HA结合和MHCII表达。这个过程是基于Lutz 等人 6的既定的程序,并能产生5 -在一个10毫升培养的第7天10×10 6个非贴壁细胞。培养是可用的从数天7到10和在7这提供了一种简单的方法来生长,并在大量隔离在体外肺泡状巨噬天产生巨噬细胞,未成熟和成熟DC,以及一些前体细胞的异质群体。

Protocol

小鼠按照加拿大理事会关于道德的动物研究动物护理指南由不列颠哥伦比亚省的动物护理委员会的批准大学的程序进行安乐死。 1.获得从小鼠股骨和胫骨单细胞骨髓暂停开关上的生物安全柜(BSC)之前15分钟开始的过程的吹扫柜内空气,并允许空气流稳定,用70%的乙醇,然后清洁/喷雾BSC表面。一切都保持无菌尽可能为协议的全部内容。不切非无菌条件下的骨头。 通过在70%?…

Representative Results

总结了该方法的主要步骤的流程图如图1所示。在培养的不同时间的骨髓培养物密度和形态在图2中示出。在第1天,将细胞小和稀疏,用3天有更多的细胞,一些较大和一些已开始附着。第6天有一定的粘附和非粘附部分( 图2A)。培养可以从第7天收获- 10与存在于第10天。图2B的CD11c +细胞的比例更高示收获前一天7培?…

Discussion

在这个手稿,我们提供了从正在从Lutz 等人6适于单个小鼠骨髓培养产生的GM-CSF衍生的巨噬细胞和DC的方法。 MHCII表达和FL-HA结合未成熟DC和巨噬细胞区分在这种文化中( 见图3C),而此前已经很难。这一点,与Helft 19另一份报告,都表明以前被认为只的DC GM-CSF诱导BMDC文化中的异质性。 Helft 19用完全不同的培养条件下产生的BMDCs但也发?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由卫生研究院(CIHR)(批准MOP-119503)和加拿大自然科学与工程理事会(NSERC)的加拿大学院资助。 NSERC还支持夏季助学金为YD和AA YD是由英属哥伦比亚大学(UBC)大学用4年的奖学金奖励支持,AA由CIHR与研究生硕士奖(CGS-M)的支持。我们感谢卡尔文Roskelley与用于生成图2中的图像在显微镜的帮助。我们也承认从UBC动物和流式细胞仪设备的支持。

Materials

Flow Cytometer BD  LSR-II
Automated Inverted Microscope  Leica  DMI4000 B
Centrifuge  Thermo Fisher ST-40R
Biosafety Cabinet Nuaire NU-425-600
Syringe 1 ml BD 309659
26 1/2 Gauge Needle BD 305111
50 ml Conical Tube  Corning 357070 *Falcon brand
Eppendorf tubes (1.5 ml) Corning MCT-150-C
5 ml polystyrene round bottomed tubes Corning 352052
Dissection Tools Fine Science Tools  *Various  *Dissection scissors, dumont forcep and standard forcep 
Hemocytometer  Richert 1490
Sterile 100 x 15 mm Petri Dish Corning 351029 *Falcon brand
2-Mercaptoethanol Thermo Fisher 21985-023
Ammonium Chloride BDH BDH0208-500G
Bovine Serum Albumin Fisher Bioreagents BP1600-1
Brefeldin A Sigma B7651-5MG
EDTA Sigma E5134-1KG Ethylenediaminetetraacetic acid
Fetal Bovine Serum Thermo Fisher 16000-044
Hank's Balanced Salt Solution Thermo Fisher 14175-095 
HEPES Thermo Fisher 15630-080 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
L-Glutamine Sigma G8540-100G
LPS Ultrapure Invivogen tlrl-3pelps
MEM Non-Essential Amino Acids Solution  Thermo Fisher 11140-050
Penicillin/Streptomycin 100x Thermo Fisher 15140-122
Potassium Phosphate Monobasic BDH BDH0268-500G
Potassium Chloride BDH BDH9258-500G
Recombinant GM-CSF Peprotech 315-03-A
Rooster Comb Sodium Hyaluronate  Sigma H5388-1G *Used to make fluoresceinated hyaluronan
RPMI-1640  Thermo Fisher 21870-076 No sodium pyruvate no glutamine. Warm media to 37oC before using. 
Sodium Chloride Fisher  5271-10  
Sodium Phosphate Dibasic Sigma 50876-1Kg
Sodium Pyruvate Sigma P5290-100G
Tris(hydroxymethyl)aminomethane Fisher Bioreagents BP152-5
Trypan Blue Sigma T8154
Anti-Fc Receptor (unlabeled), Tissue Culture Supernatant N/A N/A Clone: 2.4G2
Anti-CD11c PeCy7 eBioscience 25-0114-82 Clone: N418
Anti-Gr-1 efluor450 eBioscience 48-5931-82 Clone: RB6-8C5
Anti-MHCII APC eBioscience 17-5321-82 Clone: M5/114.15.2
Biotinylated Anti-MerTK Abcam BAF591 Goat polyclonal IgG
Streptavidin PE eBioscience 12-4317-87
Propidium Iodide Sigma P4170-25MG
DAPI (4',6-diamidino-2-phenylindole) Sigma D9542-5MG

References

  1. Fleetwood, A. J., Lawrence, T., Hamilton, J. A., Cook, A. D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 178 (8), 5245-5252 (2007).
  2. Lari, R., et al. Macrophage lineage phenotypes and osteoclastogenesis–complexity in the control by GM-CSF and. Bone. 40 (2), 323-336 (2007).
  3. Brasel, K., De Smedt, T., Smith, J. L., Maliszewski, C. R. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 96 (9), 3029-3039 (2000).
  4. Angelov, G. S., Tomkowiak, M., Marcais, A., Leverrier, Y., Marvel, J. Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8 T cells and to generate memory cells in vivo. J Immunol. 175 (1), 189-195 (2005).
  5. Inaba, K., et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 176 (6), 1693-1702 (1992).
  6. Lutz, M. B., et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 223 (1), 77-92 (1999).
  7. Labeur, M. S., et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol. 162 (1), 168-175 (1999).
  8. Berthier, R., Martinon-Ego, C., Laharie, A. M., Marche, P. N. A two-step culture method starting with early growth factors permits enhanced production of functional dendritic cells from murine splenocytes. J Immunol Methods. 239 (1-2), 95-107 (2000).
  9. Brasel, K., et al. Flt3 ligand synergizes with granulocyte-macrophage colony-stimulating factor or granulocyte colony-stimulating factor to mobilize hematopoietic progenitor cells into the peripheral blood of mice. Blood. 90 (9), 3781-3788 (1997).
  10. Segura, E., Amigorena, S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 34 (9), 440-445 (2013).
  11. West, M. A., et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science. 305 (5687), 1153-1157 (2004).
  12. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24 (2), 179-189 (2006).
  13. Goodridge, H. S., et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse. Nature. 472 (7344), 471-475 (2011).
  14. Shalek, A. K., et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 510 (7505), 363-369 (2014).
  15. Vander Lugt, B., et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol. 15 (2), 161-167 (2014).
  16. Shibata, Y., et al. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity. 15 (4), 557-567 (2001).
  17. Lacey, D. C., et al. Defining GM-CSF- and Macrophage-CSF Dependent Macrophage Responses by In Vitro Models. J Immunol. 188 (11), 5752-5765 (2012).
  18. Poon, G. F., et al. Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures. J Immunol. 195 (2), 632-642 (2015).
  19. Helft, J., et al. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells. Immunity. 42 (6), 1197-1211 (2015).
  20. Stockinger, B., Zal, T., Zal, A., Gray, D. B. cells solicit their own help from T cells. J. Exp. Med. 183 (3), 891-899 (1996).
  21. de Belder, A. N., Wik, K. O. Preparation and properties of fluorescein-labelled hyaluronate. Carbohydr Res. 44 (2), 251-257 (1975).
  22. Stewart, C. C., Stewart, S. J. Immunophenotyping. Current Protocols in Cytometry. , (2001).
  23. Dearman, R. J., Cumberbatch, M., Maxwell, G., Basketter, D. A., Kimber, I. Toll-like receptor ligand activation of murine bone marrow-derived dendritic cells. Immunology. 126 (4), 475-484 (2009).
  24. Abdi, K., Singh, N. J., Matzinger, P. Lipopolysaccharide-Activated Dendritic Cells: ‘Exhausted’ or Alert and Waiting. J Immunol. 188 (12), 5981-5989 (2012).
  25. Contreras, I., et al. Impact of Leishmania mexicana Infection on Dendritic Cell Signaling and Functions. PLoS Negl Trop Dis. 8 (9), (2014).
  26. Feng, T., Cong, Y. Z., Qin, H. W., Benveniste, E. N., Elson, C. O. Generation of Mucosal Dendritic Cells from Bone Marrow Reveals a Critical Role of Retinoic Acid. J Immunol. 185 (10), 5915-5925 (2010).
  27. Grauer, O., et al. Analysis of maturation states of rat bone marrow-derived dendritic cells using an improved culture technique. Histochem Cell Biol. 117 (4), 351-362 (2002).
  28. Suzuki, T., et al. Pulmonary macrophage transplantation therapy. Nature. 514 (7523), 450-454 (2014).
  29. Happle, C., et al. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med. 6 (250), (2014).
check_url/kr/54194?article_type=t

Play Video

Cite This Article
Dong, Y., Arif, A. A., Poon, G. F. T., Hardman, B., Dosanjh, M., Johnson, P. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow. J. Vis. Exp. (112), e54194, doi:10.3791/54194 (2016).

View Video