Summary

Human Primary Trofoblast Cell Cultuur aan de beschermende effecten van melatonine tegen hypoxie Studie / reoxygenation-geïnduceerde Disruption

Published: July 30, 2016
doi:

Summary

This manuscript presents a unique in vitro model of immunopurified human villous cytotrophoblast cells cultured under hypoxia/reoxygenation. This model is suitable to study the protective effects of promising treatments, such as melatonin, on pregnancy complications associated with increased oxidative stress and altered placental function.

Abstract

This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.

Introduction

Gedurende de zwangerschap, de placenta cytotrofoblastcellen, die mononucleaire stamcellen zijn, zich snel vermenigvuldigen en differentiëren in ofwel villous of extravilleuze cytotrofoblastcellen. Extravilleuze cytotrofoblasten binnen te vallen en de vorm van de spiraal arteriën van de baarmoederwand. Villous cytotrofoblasten, anderzijds blijven prolifereren, differentiëren en zekering multinucleated syncytiotrofoblast (de syncytium) 1 vormen. Het onderhoud van villi trofoblast homeostase is essentieel voor foetale welzijn en gezonde zwangerschap. In feite, villous trofoblasten mogelijk maternale-foetale uitwisseling van zuurstof en voedingsstoffen en hormonen produceren essentieel voor de zwangerschap. Bovendien is het syncytiotrofoblast het enige celtype in direct contact met de maternale bloedsomloop en een essentiële fysische en immunologische barrière. Daarom moet de syncytiotrofoblast apoptose en vervanging ondergaan homeostatische onderhoud en AVOid placenta pathologie 2-5.

De door Kliman et al. 6 ontwikkeld in 1986 tot primaire villous cytotrofoblasten isoleren van menselijke placenta's techniek zorgde voor een revolutie in de placenta onderzoek doordat de studie van de moleculaire mechanismen die betrokken zijn bij villous trofoblast differentiatie. Deze klassieke techniek, waarbij in de enzymatische digesties met trypsine en DNase, gevolgd door isolatie van dichtheidscentrifugatie media (colloïdale silicadeeltjes bekleed met polyvinylpyrrolidon of Percoll) wordt nu erkend als de gouden standaard voor het isoleren villeus cytotrofoblastcellen. De techniek kan worden geoptimaliseerd door magnetische immunozuivering, een procedure die villous cytotrofoblasten scheidt van niet-trofoblastcellen gebaseerd op de differentiële expressie van specifieke antigenen op het oppervlak van deze cellen. We kozen voor het menselijke leukocyt antigen ABC (HLA-ABC) vanwege de afwezigheid van de expressie op het trofoblastische cel membraame 7,8.

De placenta is een orgaan dat dramatische verschillen in zuurstofgehalte ondergaat tijdens de zwangerschap. In het eerste trimester is de oxygenatie verhouding fysiologisch zeer laag (2% O 2) maar neemt milde niveaus van oxygenatie (8% O 2) in het tweede en derde trimester. Tuuli et al. 9 beschreven dat het in vitro reproduceren van de trofoblast omgeving in de placenta villi is een uitdaging en variaties oxygenatie niveau kan zelfs leiden tot fenotypische veranderingen. Het is daarom voorgesteld 8% zuurstof vast die normoxia de zuurstofspanning in placenta villi in het derde trimester van de zwangerschap 8,9 nabootsen. Chen et al. 10 uitgebreid bestudeerd verscheidene variabelen in verband met zuurstofspanning in trofoblast celkweek en toonde het belang van het bepalen van het zuurstofgehalte in een pericellulaire omgeving. De niveaus van zuurstof in de villi neiging te stijgendoor vasculogenese. De bloedstroom in placenta villi voortdurend toeneemt en het niveau van waterstofperoxide (een overvloedige reactieve zuurstofspecies) een belangrijk signaal dat vasculogenese 11,12 regelt. In de zwangerschap complicaties, een gebrek aan vasculogenese genereert hypoxie, en nog belangrijker, intermitterende variaties van oxygenatie (genaamd hypoxie / reoxygenatie). Deze omstandigheden leiden tot een abnormale verhoging van de oxidatieve stress, die de placenta en de levensvatbaarheid van de foetus 13,14 compromissen. De veranderingen die trofoblast cellen ondergaan in vivo tijdens episodes van hypoxie / reoxygenation kan worden nagebootst in vitro als volgt: villous cytotrofoblasten onder normoxische omstandigheden (8% O 2) totdat ze differentiëren tot syncytiotrofoblast worden gehandhaafd. Zij worden vervolgens onderworpen aan hypoxische omstandigheden (0,5% O2) gedurende 4 uur, gevolgd door nog 18 h normoxia (reoxygenatie). Met behulp van deze hypoxie / reoxygenation benadering, trofoblasten exHiBit gedereguleerd redox status en verhoogde intrinsieke apoptose 8, zoals in sommige zwangerschap complicaties waargenomen. Daarom is het zinvol om in vitro model om nieuwe preventieve en therapeutische mogelijkheden te evalueren bestrijding zwangerschap complicaties van placenta hypoxie / reoxygenatie.

Placenta cellen produceren melatonine, dat een aantal belangrijke functies, zoals het vermogen om oxidatieve stress en placentale dysfunctie 15 overbodig is. Hier presenteren we de experimentele aanpak en mobiele modellen die worden gebruikt om de beschermende effecten van melatonine in de placenta trofoblast cellen vertonen op moleculair, cellulair en functioneel niveau 8.

Protocol

Placenta's werden verkregen direct na spontane vaginale leveringen van ongecompliceerde zwangerschap met de CHUM-St-Luc ziekenhuis, Montreal, QC, Canada, met geïnformeerde toestemming van de patiënt en de goedkeuring van de ethische commissies (CHUM-St-Luc Ziekenhuis en INRS-Institut Armand-Frappier, Laval, QC, Canada). 1. Isolatie en zuivering van Villous cytotrofoblastcellen Oplossingen en media Bereid transportmiddelen aanvulling Dulbecco's gemodificeerd Eagle's Medium hoog g…

Representative Results

Isolatie en immunozuivering van villous cytotrofoblastcellen van een normale term placenta verkregen door vaginale bevalling leverde 1 x 10 8 levensvatbare cellen. De placenta woog 350 g, was 19 cm in diameter 4 cm hoog met schijfvormige vorm en transparant membranen. Geen zaadlob misvorming werd gedetecteerd. De navelstreng had paracentrale lokalisatie en een lengte van 56 cm. De zuiverheid werd beoordeeld door flowcytometrie behulp vimentine en cytokeratine 7-merkers. Meer d…

Discussion

In zoogdieren, ontwikkeling van de foetus is direct afhankelijk van een adequate placenta-functie. De oorsprong van ontwikkeling stoornissen zijn gebaseerd op de hypothese dat de oorzaak van ziekten manifesteren op latere leeftijd naar vroege ontwikkeling en dat de placenta een mechanistische rol bij de foetale 30-32 kunnen worden getraceerd. De placenta is de sleutel mediator van de foetale groei en ontwikkeling: het reguleert nutriëntentransfers, beschermt tegen schadelijke blootstelling, en heeft grote en…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) (no. 262011-2009) to CV and March of Dimes Social and Behavioral Sciences Research grant (#12-FY12-179) to CV and JTS; by studentships to LSF from the Ministère de l’éducation, de l’Enseignement supérieurs et de la recherche (MEESR)-Fonds de recherche du Québec (FRQ)-Nature et technologies (NT) and the Fondation Universitaire Armand-Frappier INRS, to HC from the Réseau Québécois en Reproduction-NSERC-CREATE, to AAHT from the Canadian Institutes of Health Research (CIHR) and FRQ-Santé, and to JBP from NSERC; by a fellowship to EMAS from the Conselho Nacional de Desenvolvimento Cientìfico e Tecnològico (CNPq) and the Programme de bourses d’excellence pour étudiants étrangers MEESR-FRQNT.

Materials

Curved Metzenbaum Scissors Shandon 9212 surgical equipment (cell isolation) (2 units)
Splinter Forceps Fine 41/2in Fisherbrand 13-812-42 surgical equipment (cell isolation) (2 units)
Scissors 4.5 Str Dissection Fisherbrand 08-940 surgical equipment (cell isolation) (2 units)
Gauze Sponge 10cm X 10cm Cardinal Health 361020733
Oblong Glass Baking Dish Pyrex 1105397 Glassware (2.8L)
Funnel Buchner  Coorstek Inc 10-356E Glassware (114MM DIAMeter)
Watch Glass  pyrex 9985100EMD Glassware
Formalin solution, neutral buffered, 10% Sigma-Aldrich HT501128-4L histological tissue fixative solution
Trypsinizing Flasks Wheaton 355395 Glassware (1 unit)
Disposable Culture Tubes Kimble 73750-13100 Glassware
Borosilicate Glass Pasteur Pipet (22.8 Cm)  Fisherbrand K63B1367820C Glassware
250 Ml Glass Beakers  Fisherbrand KFS14005250 Glassware
Glass Media Bottles With Cap Fisherbrand KFS14395250 Glassware (8 units)
50 Ml Corex Tube  Corning 8422-A (1 unit)
15 Ml Polystyrene Centrifuge Tube Corning 430791
50 Ml Polystyrene Centrifuge Tube Corning 430829
10ml Serological Pipet Corning 11415038
Cell Strainer 100μm Nylon Corning 431752
Absorbant Liner Scienceware 1199918
500 Ml Bottles Top Filter  Corning Pore: 0,22 µm / medium and HBSS preparation
2 Ml Criogenic Vials Corning 430488
Freezing Container, Nalgene Mr. Frosty Sigma-Aldrich C1562-1EA
Peristaltic Pump Pharmacia Fine Chemicals P3 model
Shaking Water Bath Fisher Model 127
Vacuum Pump ABM 4EKFS6CX-4
Sodium Chloride Fisherbrand EC231-598-3 Saline solution 0.9%
Hank’s Buffered Salt Solution (Hbss) Sigma-Aldrich H2387 Quantity: 9.25 (one vial) for 1L of digestion solution
Hydroxypiperazineethansulphonic Acid (Hepes) Life Technologies 15630-080 25mL (1M) for 1L of digestion solution
Trypsin Type I Sigma-Aldrich T8003 9,888U
Deoxyribonuclease Type Iv Roche 10-104-159-001 402,000U
Calcium Chloride Sigma-Aldrich C4901 100mM
Magnesium Sulfate Baker 2500-01 800mM
Dulbecco’s Modified Eagle Medium High Glucose (Dmem) Life Technologies 10564-045
Penicillin/Streptomycin Sulphate Hyclone SV30010
Fetal Bovine Serum Corning 35-010-CV
Percoll Sigma-Aldrich P1644  Density centrifugation media gradient. Volume: 36mL
Isopropanol Acros 42383-0010 50mL
Dimethyl Sulfoxide Sigma-Aldrich 472301
Automacs Magnetic Separator  Miltenyi Biotec Model 003
Automacs Columns  Miltenyi Biotec 130-021-101
Automacs Running Buffer  Miltenyi Biotec 130-091-221 http://www.miltenyibiotec.com/~/media/Images/Products/Import/0001100/IM0001131.ashx?force=1
Automacs Rinsing Solution  Miltenyi Biotec 130-091-222 http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-buffers/automacs-rinsing-solution.aspx
Anti-Human Hla Abc Purified Clone W6/32 Affymetrix eBioscience 14-9983-82 anti-mouse antibody
Anti Mouse Igg Microbeads Miltenyi Biotec 130048401
Multiple Well Plate -  6 Well With Lid Corning 3335 Cell Bind surface
Multiple Well Plate -  24 Well With Lid Corning 3337 Cell Bind surface
Multiple Well Plate -  96 Well With Lid Corning 3300 Cell Bind surface
Modular Incubator Chamber  Billups-Rothenberg MIC-101 A set of two is necessary for simultaneous to generate normoxia and hypoxia/reoxygenation conditions
Single Flow Meter Billups-Rothenberg SFM3001
50 Mm In-Line Filter  Whatman 6721-5010 PTFE, pore: 1.0 µm
Gas Regulator Pro Star PRS301233 A set of two is necessary for simultaneous to generate normoxia and hypoxia/reoxygenation conditions
Gas Hose Class Vi Clear 5/16  Parker 100-05070102 3 pieces with ~ 0.5 m
17 Mm Adjustable Gas Hose Clamp Tiewraps THCSS-16
Normoxia Gas Cylinder  Praxair NI CDOXR1U-K Size K (3rd trimester‘s composition: 5% CO2, 8% O2, Bal. N2)
Normoxia Gas Cylinder  Praxair NI CDOXR1U-K Size K (3rd trimester‘s composition: 5% CO2, 0.5% O2, Bal. N2)
Oxygen Microelectrode Mi-730 Microelectrodes INC 84477
Oxygen Adapter Microelectrodes INC 3572
ROS Detection Reagent: CM-H2DCFDA  Invitrogen C-400
β-hCG ELISA kit  DRG internatinal EIA-4115
Anti-Vimentin ourified antibody eBioscience 14-9897 Host: mouse
Anti-Cytokeratin 7 (FITC) antibody  Abcam ab119697 Host: mouse
Alexa Fluor 488 Goat Anti-mousse IgG H&L antibody Life Technologies A-11029

References

  1. Vaillancourt, C., Lanoix, D., Le Bellego, F., Daoud, G., Lafond, J. Involvement of MAPK signalling in human villous trophoblast differentiation. Mini Rev Med Chem. 9 (8), 962-973 (2009).
  2. Gauster, M., Moser, G., Orendi, K., Huppertz, B. Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta. 30, 49-54 (2009).
  3. Huppertz, B., Kadyrov, M., Kingdom, J. C. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol. 195 (1), 29-39 (2006).
  4. Lanoix, D., Lacasse, A. A., Reiter, R. J., Vaillancourt, C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol. 348 (1), 1-11 (2012).
  5. Huppertz, B., Frank, H. G., Reister, F., Kingdom, J., Korr, H., Kaufmann, P. Apoptosis cascade progresses during turnover of human trophoblast: analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab Invest. 79 (12), 1687-1702 (1999).
  6. Kliman, H. J., Nestler, J. E., Sermasi, E., Sanger, J. M., Strauss, J. F., 3rd, Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 118 (4), 1567-1582 (1986).
  7. Lanoix, D., Beghdadi, H., Lafond, J., Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 45 (1), 50-60 (2008).
  8. Lanoix, D., Lacasse, A. A., Reiter, R. J., Vaillancourt, C. Melatonin: The watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol Cell Endocrinol. 381 (1-2), 35-45 (2013).
  9. Tuuli, M. G., Longtine, M. S., Nelson, D. M. Review: Oxygen and trophoblast biology–a source of controversy. Placenta. 32, 109-118 (2011).
  10. Chen, B., Longtine, M. S., Nelson, D. M. Pericellular oxygen concentration of cultured primary human trophoblasts. Placenta. 34 (2), 106-109 (2013).
  11. Roberts, J. M., Hubel, C. A. Is oxidative stress the link in the two-stage model of pre-eclampsia. Lancet. 354 (9181), 788-789 (1999).
  12. Burton, G. J., Jauniaux, E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 25 (3), 287-299 (2011).
  13. Ji, L., Brkic, J., Liu, M., Fu, G., Peng, C., Wang, Y. L. Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med. 34 (5), 981-1023 (2013).
  14. Redman, C. W., Sargent, I. L. Placental stress and pre-eclampsia: a revised view. Placenta. 30, 38-42 (2009).
  15. Sagrillo-Fagundes, L., Soliman, A., Vaillancourt, C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Ginecol. 66 (3), 251-266 (2014).
  16. Blaschitz, A., Weiss, U., Dohr, G., Desoye, G. Antibody reaction patterns in first trimester placenta: implications for trophoblast isolation and purity screening. Placenta. 21 (7), 733-741 (2000).
  17. Potgens, A. J., Gaus, G., Frank, H. G., Kaufmann, P. Characterization of trophoblast cell isolations by a modified flow cytometry assay. Placenta. 22 (2-3), 251-255 (2001).
  18. Petroff, M. G., Phillips, T. A., Ka, H., Pace, J. L., Hunt, J. S. Isolation and culture of term human trophoblast cells. Methods Mol Med. 121, 203-217 (2006).
  19. Maldonado-Estrada, J., Menu, E., Roques, P., Barre-Sinoussi, F., Chaouat, G. Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry. J Immunol Methods. 286 (1-2), 21-34 (2004).
  20. Le Bellego, F., Vaillancourt, C., Lafond, J. Isolation and culture of term human cytotrophoblast cells and in vitro methods for studying human cytotrophoblast cells’ calcium uptake. Methods Mol Biol. 550, 73-87 (2009).
  21. Mounier, C., Barbeau, B., Vaillancourt, C., Lafond, J. Endocrinology and cell signaling in human villous trophoblast. Methods Mol Biol. 550, 89-102 (2009).
  22. Chen, B., et al. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab. 302 (9), 1142-1152 (2012).
  23. Reti, N. G., et al. Effect of high oxygen on placental function in short-term explant cultures. Cell Tissue Res. 328 (3), 607-616 (2007).
  24. Pidoux, G., et al. Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. J Cell Physiol. 212 (1), 26-35 (2007).
  25. Pidoux, G., et al. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol. 298 (6), 1517-1526 (2010).
  26. Williams, J. L., Fyfe, G. K., Sibley, C. P., Baker, P. N., Greenwood, S. L. K+ channel inhibition modulates the biochemical and morphological differentiation of human placental cytotrophoblast cells in vitro. Am J Physiol Regul Integr Comp Physiol. 295 (4), 1204-1213 (2008).
  27. Schild, R. L., Schaiff, W. T., Carlson, M. G., Cronbach, E. J., Nelson, D. M., Sadovsky, Y. The activity of PPAR gamma in primary human trophoblasts is enhanced by oxidized lipids. J Clin Endocrinol Metab. 87 (3), 1105-1110 (2002).
  28. Menendez-Pelaez, A., Reiter, R. J. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res. 15 (2), 59-69 (1993).
  29. Perrone, S., Stazzoni, G., Tataranno, M. L., Buonocore, G. New pharmacologic and therapeutic approaches for hypoxic-ischemic encephalopathy in the newborn. J Matern Fetal Neonatal Med. 25, 83-88 (2012).
  30. Nelissen, E. C., van Montfoort, A. P., Dumoulin, J. C., Evers, J. L. Epigenetics and the placenta. Hum Reprod Update. 17 (3), 397-417 (2011).
  31. Barker, D. J. Intrauterine programming of adult disease. Mol Med Today. 1 (9), 418-423 (1995).
  32. Barker, J. R., Thomas, C. F., Behan, M. Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats. Respir Physiol Neurobiol. 165 (2-3), 175-184 (2009).
  33. Yui, J., et al. Functional, long-term cultures of human term trophoblasts purified by column-elimination of CD9 expressing cells. Placenta. 15 (3), 231-246 (1994).
  34. Kilani, R. T., Chang, L. J., Garcia-Lloret, M. I., Hemmings, D., Winkler-Lowen, B., Guilbert, L. J. Placental trophoblasts resist infection by multiple human immunodeficiency virus (HIV) type 1 variants even with cytomegalovirus coinfection but support HIV replication after provirus transfection. J Virol. 71 (9), 6359-6372 (1997).
  35. Knofler, M., Stenzel, M., Husslein, P. Shedding of tumour necrosis factor receptors from purified villous term trophoblasts and cytotrophoblastic BeWo cells. Hum Reprod. 13 (8), 2308-2316 (1998).
  36. Douglas, G. C., King, B. F. Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J Immunol Methods. 119 (2), 259-268 (1989).
  37. Li, L., Schust, D. J. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod Biol Endocrinol. 13, 71 (2015).
  38. Stenqvist, A. C., et al. An efficient optimized method for isolation of villous trophoblast cells from human early pregnancy placenta suitable for functional and molecular studies. Am J Reprod Immunol. 60 (1), 33-42 (2008).
  39. Potgens, A. J., Kataoka, H., Ferstl, S., Frank, H. G., Kaufmann, P. A positive immunoselection method to isolate villous cytotrophoblast cells from first trimester and term placenta to high purity. Placenta. 24 (4), 412-423 (2003).
  40. Lanoix, D., Vaillancourt, C. Cell culture media formulation and supplementation affect villous trophoblast HCG release. Placenta. 31 (6), 558-559 (2010).
  41. Vaillancourt, C., Lafond, J. Human embryogenesis: overview. Methods Mol Biol. 550, 3-7 (2009).
  42. Armant, D. R., et al. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor. Development. 133 (4), 751-759 (2006).
  43. McCaig, D., Lyall, F. Hypoxia upregulates GCM1 in human placenta explants. Hypertens Pregnancy. 28 (4), 457-472 (2009).
  44. Burton, G. J., et al. Optimising sample collection for placental research. Placenta. 35 (1), 9-22 (2014).
  45. Lanoix, D., et al. Quantitative PCR pitfalls: the case of the human placenta. Mol Biotechnol. 52 (3), 234-243 (2012).
  46. Bilban, M., et al. Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta. 31 (11), 989-996 (2010).
  47. Novakovic, B., et al. Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. Mol Hum Reprod. 17 (6), 344-353 (2011).
  48. Burleigh, D. W., et al. Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts. Placenta. 28 (5-6), 383-389 (2007).
  49. Hung, T. H., Skepper, J. N., Charnock-Jones, D. S., Burton, G. J. Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res. 90 (12), 1274-1281 (2002).
  50. Heazell, A. E., Moll, S. J., Jones, C. J., Baker, P. N., Crocker, I. P. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta. 28, 33-40 (2007).
  51. Heazell, A. E., Lacey, H. A., Jones, C. J., Huppertz, B., Baker, P. N., Crocker, I. P. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta. 29 (2), 175-186 (2008).
  52. Chen, B., Longtine, M. S., Nelson, D. M. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 153 (10), 4946-4954 (2012).
  53. Lanoix, D., Guerin, P., Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 53 (4), 417-425 (2012).
  54. Galano, A., Tan, D. X., Reiter, R. J. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 51 (1), 1-16 (2011).
  55. Alers, N. O., Jenkin, G., Miller, S. L., Wallace, E. M. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction–a phase I pilot clinical trial: study protocol. BMJ Open. 3 (12), 004141 (2013).
  56. Hobson, S. R., Lim, R., Gardiner, E. E., Alers, N. O., Wallace, E. M. Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): study protocol. BMJ Open. 3 (9), 003788 (2013).
check_url/kr/54228?article_type=t

Play Video

Cite This Article
Sagrillo-Fagundes, L., Clabault, H., Laurent, L., Hudon-Thibeault, A., Salustiano, E. M. A., Fortier, M., Bienvenue-Pariseault, J., Wong Yen, P., Sanderson, J. T., Vaillancourt, C. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption. J. Vis. Exp. (113), e54228, doi:10.3791/54228 (2016).

View Video