Summary

EOB-DTPAとそのののGa(III)錯体に関する研究<sup> 68</sup> Gaの放射性標識アナログ

Published: August 17, 2016
doi:

Summary

EOB-DTPAの単離およびその後の複合体形成の自然のGa(III)および68とGaが本明細書に提示されるだけでなく、標識効率上のすべての化合物との調査を徹底的に分析、in vitroでの安定性およびオクタノール /水のための手順放射性標識された複合体の分配係数。

Abstract

私たちは、EOB-DTPA(3,6,9-トリアザ – 3,6,9-トリス(カルボキシメチル)-4-(エトキシ)-undecanedioic酸)そののGd(III)から複雑とプロトコルのための単離のための方法を実証します斬新な非放射性、 すなわち、自然のGa(III)と同様に放射性の68 Ga錯体の製造。リガンド並びにジョージア(III)錯体は、核磁気共鳴(NMR)分光法、質量分析および元素分析によって特徴づけした。 の68 Gaは、68 Ge / 68 Gaジェネレータから、標準的な溶出法により得ました。 pHが3.8から4.0でEOB-DTPAの68 Gaの標識効率を評価するための実験を行いました。確立された分析技術ラジオTLC(薄層クロマトグラフィー)、ラジオHPLC(高速液体クロマトグラフィー)は、トレーサーの放射化学的純度を決定するために使用しました。 68 Gaトレーサー」親油性オクタノール /水distributioの最初の調査として、pH7.4の溶液中に存在する68のGa種のN個の係数は、抽出法によって決定した。行った生理的pHでの様々な媒体におけるトレーサのインビトロ安定性の測定値を、分解の異なる速度を明らかにする。

Introduction

Gadoxetic酸、リガンドEOB-DTPA 1ののGd(III)錯体の一般名は、肝胆道磁気共鳴画像(MRI)で頻繁に使用される造影剤である。2,3により、その肝細胞によって特異的な取り込みと高い割合に肝胆道排泄のそれは、局所性病変と肝腫瘍の局在化を可能にする。MRI技術( 例えば、造影剤の毒性、閉所恐怖症または金属インプラントの患者に限定された適用)の2-5しかし、一定の制限が代替診断ツールを求めます。

陽電子放射断層撮影(PET)分子イメージング法であり、前記放射性物質(トレーサー)少量の体内での分布をPETスキャナによって記録される際に、投与される。6 PETは高いが可能に動的な方法であります空間的および時間的な画像の解像度と同様にしなくても、結果の定量化、MRI造影剤の副作用に対処します。得られた代謝情報の有益な価値はさらに、最も一般的にPET / CTスキャナにおけるコンピュータ断層撮影(CT)とのハイブリッド画像化することによって達成さ、付加的な画像化方法から受け取った解剖学的データと組み合わせることによって増加させることができます。

PETに適したトレーサーの化学構造は、陽電子放射体として放射性同位元素を含まなければなりません。陽電子は、彼らはほとんどすぐに周辺組織の原子殻の電子と消滅するので、短い寿命を持っています。消滅によって運動の反対方向を有する2つの511keVのγ光子がPETスキャナによって記録され、放出される。7,8トレーサーを形成するために2デオキシの場合のように、PET核種は、分子に共有結合され得ます2- [18 F] fluoroglucose(FDG)、最も広く使用されるPETトレーサー7が、核種はまた、1つまたは複数のリガンドに配位結合を形成することができる( 例えば、[68 Gaの] -DOTATOC 9,10)、または溶存無機塩( 例えば、[18 F]フッ化ナトリウム11)として適用されます。それは、その生体内分布、代謝および排泄動作を決定するよう要するに、トレーサーの構造が重要です。

適切なPET核種は便利な陽電子エネルギーと可用性だけでなく、意図された調査のための十分な半減期のような良好な特性を組み合わせる必要があります。 68 Gaの核種は、過去20年間に、PETの分野で不可欠な力となっています。12,13これが原因サイクロトロン付近から独立して、オンサイトの標識を可能にする発電システムを介してその可用性、主にあります。発電機では、母親は68 Geが娘核種68 Gaは、適切なキレート剤に溶出し、続いてラベル付けされたカラムに吸収される核種。6,14 の68 Ga核種がtrivalとして存在するので、ただのGd(III)10,13のような耳鼻咽喉科カチオン、代わりにgadoxetic酸と同じ全体的に負電荷を有する複合体を生じるであろう68のGaとEOB-DTPAキレート。したがって、その68のGaトレーサーは、PETイメージングのための適性と同様の特性肝臓特異性を組み合わせることがあります。 gadoxetic酸は、次のコンテキストで購入し、二ナトリウム塩として投与されていますが、私たちはGdの[EOB-DTPA]と呼ぶことにしますのGa [EOB-DTPA]、または68 Gaの[などの非放射性のGa(III)錯体へ便宜的に、放射性標識成分の場合にはEOB-DTPA]。

PET用のトレーサーとしてのそれらの適用性を評価するために、放射性金属錯体は、最初にin vivoまたはex vivo実験で、インビトロで広範に検討される必要があります。それぞれの医学的問題のための適合性を判断するために、生体内分布挙動およびクリアランスプロフィール、安定性、器官特異性および細胞またはTISSUのような様々なトレーサー特性電子取り込みを検討する必要があります。それらの非侵襲的な文字に、in vitroでの決定は、多くの場合、in vivo実験に先立って行われています。一般的には、DTPAおよびその誘導体が原因で、in vivoで投与した場合に比較的速い分解その結果、運動不活性を欠いているこれらの複合体への68 Gaのためのキレート剤として限られた適合性であることが認められている。14-20これは主にアポトランスフェリン作用によって引き起こされます血漿中の68 Gaのための競争相手。それにもかかわらず、我々は診断情報は、それによって必ずしも長期トレーサー安定性を必要としない、数分以内に注射後3,4,21-23を提供することができる、請求肝胆道造影、その適用可能性に関するこの新しいトレーサーを調べました。この目的のために、我々はgadoxetic酸からEOB-DTPAを単離し、最初に二つの安定同位体、69 Gaと71の混合物として存在する天然のGa(III)、との複合体形成を行いました</SUP>ジョージア。このようにして得られた複合体は、68 Gaを、以下のキレート化のための非放射性標準を務めました。我々は方法を確立し、同時にEOB-DTPAの68 Galabeling効率を決定し、新しいの68 Gaトレーサーの親油性と異なる媒体でのその安定性を調査するための適性を評価した使用します。

Protocol

EOB-DTPAとGaの調製[EOB-DTPA] 注意:使用前に使用される有機溶剤、酸、アルカリ類の関連するすべての物質安全データシート(MSDS)を参照してください。ヒュームフード内のすべてのステップを実行し、個人用保護具(安全眼鏡、手袋、白衣)を使用します。 gadoxetic酸からEOB-DTPAの単離 フラスコに0.25 M gadoxetic酸注射液の3ミリリットルを入れてください。攪拌溶?…

Representative Results

リガンドEOB-DTPA、および非放射性のGa(III)錯体は、1 H及び13 C {1 H} NMR分光法、質量分析および元素分析によって分析しました。 図1-6に、表1に記載されていると示した結果は、物質の純度を確認します。 68 Ge / 68 Gaジェネレータの溶出は400〜600 MBqで<…

Discussion

EOB-DTPAは、多段階合成33を介してアクセス可能ですが、全く同じようにgadoxetic酸を含む利用可能な造影剤から単離することができます。この目的のために、中央のGd(III)イオンは、シュウ酸の過剰析出させることができます。 Gd(III)、シュウ酸とシュウ酸を除去した後、リガンドは、pH 1.5で冷水中での沈殿によって単離することができます。しかし、濾液の歩留まりカラムクロマ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

primovist Bayer 0.25 M
gallium(III) chloride Sigma-Aldrich Co. 450898
water (deionized)  tap water deionizing equipment by Auma-Tec GmbH
hydrochloric acid 12 M VWR 20252.29
sodium hydroxide Polskie Odczynniki Chemiczne S.A. 810925429
oxalic acid Sigma-Aldrich Co. 75688
ethyl acetate Brenntag GmbH 10010447
silica gel Merck KGaA 1.10832.9025 Geduran Si 60 0,063-0,2 mm
TLC silica gel 60 F254 Merck KGaA 1.16834.0001
methanol VWR 20903.55
ethanol Brenntag GmbH 10018366
eiethylether VWR 23807.468 stored over KOH plates
ammonia solution (25 %) VWR 1133.1
pH electrode VWR 662-1657
stirring and heating unit Heidolph 505-20000-00
pump Ilmvac GmbH 322002
frit custom design
NMR spectrometer Bruker Coorporation Ultra Shield 400
mass spectrometer Thermo Fisher Scientific Inc.
elemental analyser Hekatech GmbH Analysentechnik EuroVector EA 3000 CHNS
deuterated water D2O euriso-top D214 99,90 % D
Name Company Catalog Number Comments
Material/Equipment required for labeling procedures
68Ge/68Ga generator ITG Isotope Technologies Garching GmbH A150
pump and dispenser system Scintomics GmbH Variosystem
hydrochloric acid 30 % (suprapur) Merck KGaA 1.00318.1000
water (ultrapur) Merck KGaA 1.01262.1000
sodium chloride (suprapur) Merck KGaA 1.06406.0500
sodium acetate (suprapur) Merck KGaA 1.06264.0050
glacial acetic acid (suprapur) Merck KGaA 1.00066.0250
sodium citrate dihydrate VEB Laborchemie Apolda 10782 >98.5%
PS-H+ Cartridge (S) Macherey-Nagel 731867 Chromafix
apo-Transferrin Sigma-Aldrich Co. T2036
PBS  buffer (tablets) Sigma-Aldrich Co. 79382
human serum Sigma-Aldrich Co. H4522 from human male AB plasma
flasks, columns etc. custom design
pH electrode Knick Elektronische Messgeräte GmbH & Co. KG 765-Set
binary pump (HPLC) Hewlett-Packard G1312A (HP 1100)
UV Vis detector (HPLC) Hewlett-Packard G1315A (HP 1100)
radioactive detector (HPLC) EGRC Berthold
HPLC C-18-PFP column Advanced Chromatography Technologies Ltd. ACE-1110-1503/A100528
HPLC glass vials GTG Glastechnik Graefenroda GmbH 8004-HP-H/i3µ
pipette Eppendorf
plastic vials Sarstedt AG & Co. 6542.007
plastic vials Greiner Bio-One International GmbH 717201
activimeter MED Nuklear-Medizintechnik Dresden GmbH Isomed 2010
tweezers custom design
incubator Heraeus Instruments GmbH 51008815
vortex mixer Fisons Whirlimixer
centrifuge Heraeus Instruments GmbH 75003360
gamma well counter MED Nuklear-Medizintechnik Dresden GmbH Isomed 2100
water for chromatography Merck KGaA 1.15333.2500
acetonitrile for chromatography Merck KGaA 1.00030.2500
trifluoroacetic acid Sigma-Aldrich 91707
TLC radioactivity scanner raytest Isotopenmessgeräte GmbH B00003875 equipped with beta plastic detector

References

  1. Weinmann, H. J., et al. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn. Reson. Med. 22, 233-237 (1991).
  2. Stroszczynski, C., et al. Aktueller Stand der MRT-Diagnostik mit leberspezifischen Kontrastmitteln. Radiologe. 44, 1185 (2004).
  3. Van Beers, B. E., Pastor, C. M., Hussain, H. K. Primovist, Eovist – what to expect. J. Hepatol. 57, 421-429 (2012).
  4. Zech, C. J., Herrmann, K. A., Reiser, M. F., Schoenberg, S. O. MR Imaging in Patients with Suspected Liver Metastases: Value of Liver-specific Contrast Agent Gd-EOB-DTPA. Magn. Reson. Med. Sci. 6, 43-52 (2007).
  5. Leonhardt, M., et al. Hepatic Uptake of the Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA: Role of Human Organic Anion Transporters. Drug Metab. Dispos. 38, 1024-1028 (2010).
  6. Wadas, T. J., Wong, E. H., Weisman, G. R., Anderson, C. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. J. Chem. Rev. 110, 2858-2902 (2010).
  7. Ametamey, S. M., Honer, M., Schubiger, P. A. Molecular Imaging with PET. Chem. Rev. 108, 1501-1516 (2008).
  8. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S. Radiometals for Combined Imaging and Therapy. Chem. Rev. 113, 858-883 (2013).
  9. Henze, M., et al. PET Imaging of Somatostatin Receptors Using [68GA]DOTA-D-Phe1-Tyr3-Octreotide: First Results in Patients with Meningiomas. J. Nucl. Med. 42, 1053-1056 (2001).
  10. Hofmann, M., et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751-1757 (2001).
  11. Blau, M., Nagler, W., Bender, M. A. Fluorine-18: a new isotope for bone scanning. J. Nucl. Med. 3, 332-334 (1962).
  12. Green, M. A., Welch, M. J. Gallium Radiopharmaceutical Chemistry. Int. J. Radiat. Appl. Instrum. B. 16, 435-448 (1989).
  13. Rösch, F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 76, 24-30 (2013).
  14. Liu, S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem. Soc. Rev. 33, 445-461 (2004).
  15. Haubner, R., et al. Development of (68)Ga-labelled DTPA galactosyl human serum albumin for liver function imaging. Eur. J. Nucl. Med. Mol. Imaging. 40 (68), 1245-1255 (2013).
  16. Yang, W., Zhang, X., Liu, Y. Asialoglycoprotein Receptor-Targeted Radiopharmaceuticals for Measurement of Liver Function. Curr. Med. Chem. 21, 4-23 (2014).
  17. Chauhan, K., et al. 68Ga based probe for Alzheimer’s disease: synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging. Org. Biomol. Chem. 12, 7328-7337 (2014).
  18. Chakravarty, R., Chakraborty, S., Dash, A., Pillai, M. R. A. Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl. Med. Biol. 40, 197-205 (2013).
  19. Clevette, D. J., Orvig, C. Comparison of ligands of differing denticity and basicity for the in vivo chelation of aluminum and gallium. Polyhedron. 9, 151-161 (1990).
  20. Prinsen, K., et al. Development and evaluation of a 68Ga labeled pamoic acid derivative for in vivo visualization of necrosis using positron emission tomography. Bioorg. Med. Chem. 18, 5274-5281 (2010).
  21. Vogl, T. J., et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology. 200, 59-67 (1996).
  22. Reimer, P., et al. Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology. , 177-183 (1996).
  23. Ba-Ssalamah, A., et al. MRT der Leber. Radiologe. 44, 1170-1184 (2004).
  24. Scott, R. P. W. . Journal of Chromatography Library. 22A, A137-A160 (1983).
  25. Reichenbaecher, M., Popp, J. . Strukturanalytik organischer und anorganischer Verbindungen. , (2007).
  26. Gross, J. H. . Mass Spectrometry: A Textbook. , (2004).
  27. Ma, T. S., Rittner, R. C. . Modern Organic Elemental Analysis. , (1979).
  28. Mueller, D., et al. Simplified NaCl Based 68Ga Concentration and Labeling Procedure for Rapid Synthesis of 68Ga Radiopharmaceuticals in High Radiochemical Purity. Bioconjugate Chem. 23, 1712-1717 (2012).
  29. Roberts, T. R. Radio-column chromatography. Journal of Chromatography Library. 14, 103-132 (1978).
  30. Roberts, T. R. Radio-thin-layer chromatography. Journal of Chromatography Library. 14, 45-83 (1978).
  31. Green, M. A., Welch, M. J. Gallium radiopharmaceutical chemistry. Nucl. Med. Biol. 16, 435-448 (1989).
  32. Notni, J., Plutnar, J., Wester, H. J. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res. 2, 13 (2012).
  33. Schmitt-Willich, H., et al. Synthesis and Physicochemical Characterization of a New Gadolinium Chelate: The Liver-Specific Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA. Inorg. Chem. 38, 1134-1144 (1999).
  34. Zhernosekov, K., Nikula, T. 68Ga generator for positron emission tomography. , (2012).
  35. Simecek, J., Hermann, P., Wester, H. J., Notni, J. How is 68Ga Labeling of Macrocyclic Chelators Influenced by Metal Ion Contaminants in 68Ge/68Ga Generator Eluates?. ChemMedChem. 8, 95-103 (2013).
  36. Baur, B., et al. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A”-DTPA-DUPA-Pep. Pharmaceuticals (Basel). 7, 517-529 (2014).
  37. Boros, E., et al. RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. Nucl. Med. Biol. 39, 785-794 (2012).
  38. Beck, W. S. . Hematology. , (1998).
  39. Patel, V., Morrissey, J. . Practical and Professional Clinical Skills. , (2001).
  40. Bartke, A., Constanti, A. . Basic Endocrinology. , (1998).
  41. Bernstein, L. R. Mechanisms of Therapeutic Activity for Gallium. Pharmacol. Rev. 50, 665-682 (1998).
  42. Clausen, J., Edeling, C. J., Fogh, J. 67Ga Binding to Human Serum Proteins and Tumor Components. Cancer Res. 34, 1931-1937 (1974).
  43. Dumont, R. A., et al. Novel 64Cu- and 68Ga-Labeled RGD conjugates show improved PET imaging of αvβ3 integrin expression and facile radiosynthesis [Erratum to document cited in CA156:116856. J. Nucl. Med. 52, 1498 (2011).
  44. Pohle, K., et al. 68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl. Med. Biol. 39, 777-784 (2012).
  45. Notni, J., Pohle, K., Wester, H. J. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68 Ga-TRAP(RGD)3. Nucl. Med. Biol. 40, 33-41 (2013).
check_url/kr/54334?article_type=t

Play Video

Cite This Article
Greiser, J., Niksch, T., Weigand, W., Freesmeyer, M. Investigations on the Ga(III) Complex of EOB-DTPA and Its 68Ga Radiolabeled Analogue. J. Vis. Exp. (114), e54334, doi:10.3791/54334 (2016).

View Video