Summary

Preparation of CD4+ T Cells for Analysis of GD3 and GD2 Ganglioside Membrane Expression by Microscopy

Published: November 08, 2016
doi:

Summary

We describe a standard antibody staining protocol for use in microscopy to determine the membrane expression and localization of gangliosides in resting and activated human naïve CD4+ T cells. Also described are real-time PCR experiments using <40,000 cells that do not require additional low input RNA kits.

Abstract

The methods described herein for activation of naïve CD4+ T cells in suspension and their adherence in coverslips for confocal microscopy analysis allow the spatial localization and visualization of gangliosides involved in CD4+ T cell activation, that complement expression profiling experiments such as flow cytometry, western blotting or real-time PCR. The quantification of ganglioside expression through flow cytometry and their cellular localization through microscopy can be obtained by the use of anti-ganglioside antibodies with high affinity and specificity. Nonetheless, an adequate handling of cells in suspension involves the treatment of culture plates to promote the necessary adherence required for fluorescence or confocal microscopy acquisition. In this work, we describe a protocol for determining GD3 and GD2 ganglioside expression and colocalization with the TCR during naïve CD4+ T cell activation. Also, real-time PCR experiments using <40,000 cells are described for the determination of the GD3 and GM2/GD2 synthase genes, demonstrating that gene analysis experiments can be performed with a low number of cells and without the need of additional low input RNA kits.

Introduction

The CD4+ T cells orchestrate the immune response through their effector functions after activation by antigen presenting cells1. The study of the cellular mechanisms that are modulated during activation allows insight into a basic process of immune function. However, the study of naïve CD4+ T cells can be complicated because they represent a very small population of cells in the blood periphery2.

Through fluorescence microscopy several reports have studied the localization of different molecules involved in CD4+ T cell activation, mainly proteins associated to the plasma membrane3. The gangliosides are sialic acid containing glycosphingolipids and although they have been extensively studied in nerve cells where they are abundant, other cells such as immune cells also express gangliosides with biologically relevant functions4,5. We previously reported that during activation of human naïve CD4+ T cells there is an upregulation of the α2,8 sialyltransferase ST8Sia 1 (GD3 synthase) and the GM2/GD2 synthase, that induce the significant surface neoexpression of GD2 and the upregulation of GD3 ganglioside6. Further study of GD3, GD2 and other gangliosides in immune cells is necessary to complement a protein-based partial view of immune function.

Commonly, the study of ganglioside expression is based on techniques such as Thin Layer Chromatography (TLC)7, but this technique does not allow the spatial localization of gangliosides at the plasma membrane or in subcellular compartments, limiting biological analysis.

In this work, we describe a protocol for the antibody-mediated identification and localization of GD3 and GD2 gangliosides in human naïve CD4+ T cells and PBMCs after anti-CD3/anti-CD28 activation. With this protocol it is also possible to analyze the gene and molecular expression of gangliosides in a low number of cells in suspension, with acquisition of high quality images6, considering the small size of lymphocytes (9 µm).

Protocol

Peripheral blood from healthy male donors was obtained with informed consent and approval of the Bioethics Committee of the Centro de Investigaciòn en Dinámica Celular- Universidad Autònoma del Estado de Morelos. 1. Isolation and Activation of Human Naïve CD4+ T Cells Collect 2 ml of peripheral blood derived from healthy human donors through informed consent and dilute with 2 ml of sterile PBS-EDTA (1x Phosphate Buffered Saline (PBS), 2 mM EDTA, pH 7….

Representative Results

The protocol described in this manuscript renders a good quality of cultured and adhered resting and activated human naïve CD4+ T cells (Figure 1). The activated CD4+ T cells show the characteristic proliferative profile (Figure 1B) in comparison to the resting condition (Figure 1A). The CD25 late activation marker is useful to evaluate the efficient activation at 72 hr observed by confocal microscopy (F…

Discussion

The described protocol can be used to localize gangliosides or proteins in cell suspensions of CD4+ T cells or other immune cells (e.g., PMBCs, Figure 5) starting from a small number of cells. Because of the small size of T cells and non-adherent properties, the acquisition of fluorescence microscopic images results in poor information or low quality if the cells are not correctly adhered.

This protocol combined with a good quality confocal microscopy analy…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are grateful to Dr. José Luis Daniotti for comments. We thank the assistance to Dr. J. Arturo Pimentel and the Laboratorio Nacional de Microscopìa Avanzada-UNAM for acquisition of confocal images. I.M.-D. and T.M.V.C. were supported by grants 157634 and 253596 from Consejo Nacional de Ciencia y Tecnologìa (CONACYT), Sociedad Latinoamericana de Glicobiologìa, A.C. T.M.V.-C. is recipient of a scholarship (245192) from CONACYT. We also thank the support of the Red Temática Glicociencia en Salud – CONACYT (253596).

Materials

Advanced RPMI 1640  Thermo Fisher Scientific 12633-012 Suplemented with 3% FBS
mouse anti human CD3 antibody eBioscience 16-0037-81 OKT3 clone
mouse anti human CD28 antibody ebioscience 16-0288-81 CD28.6 clone
mouse anti human GD3  antibody Abcam ab11779 R24 clone
mouse anti human GD2 antibody Santa Cruz Biotechnology sc-53831 14G2a clone
FITC-conjugated anti-mouse IgG3
antibody
Abcam ab97259
Alexa Fluor 488 conjugated antimouse Thermo Fisher Scieni¡tific A-21131
IgG2a antibody
Alexa Fluor 647 conjugated antimouse Thermo Fisher Scieni¡tific A-21241
IgG2a antibody
Hoechst 333258 Sigma-Aldrich 861405
 Ficoll Paque-Plus GE 17-1440-02 
Trizol Reagent Invitrogen 15596-026
Naive CD4+ T Cell Isolation Kit II, human MACS Miltenyi Biotec 130-094-131
BD FACSAria II BD Biosciences Sorting 
Nunc Lab-tek chamber slide system Sigma-Aldrich C7182
Olympus FV 1000 Laser Confocal Microscope (Olympus)  Olympus Upright BX61WI and IX81 
Forward sequence primer GD3 synthase 5´-GAGCGTTCAGGAAACAAATGG- 3´ Ref. 7
Reverse sequence primer GD3 synthase 5´-CCTGTGGGAAGAGAGAGTAAG-3´ Ref. 7
Forward sequence primer GM2/GD2 synthase 5´-CAACACAGCAGACACAGTCC-3´ Ref. 7
Reverse sequence primer GM2/GD2 synthase 5´-GTGGCAATCGTGACTAGAGC-3´ Ref. 7

References

  1. Mazzon, C., Viola, A. From tango to quadrilla: current views of the immunological synapse. Cell Adh Migr. 1 (1), 7-12 (2007).
  2. Hamann, D., Pa Baars, ., Hooibrink, B., van Lier, R. W. Heterogeneity of the human CD4+ T-cell population: two distinct CD4+ T-cell subsets characterized by coexpression of CD45RA and CD45RO isoforms. Blood. 88 (9), 3513-3521 (1996).
  3. Zhong, L., Zhang, Z., Lu, X., Liu, S., Chen, C. Y., Chen, Z. W. NSOM / QD-Based Visualization of GM1 Serving as Platforms for TCR / CD3 Mediated T-Cell Activation. Biomed Res Int. , 276498 (2013).
  4. Nagafuku, M., Okuyama, K., et al. PNAS Plus: CD4 and CD8 T cells require different membrane gangliosides for activation. Procs Natl Acad Sci USA. 109 (6), E336-E342 (2012).
  5. Schnaar, R. L., Gerardy-Schahn, R., Hildebrandt, H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev. 94, 461-518 (2014).
  6. Villanueva-Cabello, T. M., Mollicone, R., Cruz-Muñoz, M. E., Lòpez-Guerrero, D. V., Martìnez-Duncker, I. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters. Glycobiology. 25 (12), 1454-1464 (2015).
  7. Müthing, J. TLC in structure and recognition studies of glycosphingolipids. Methods Mol Biol. 76 (17), 183-195 (1998).
  8. de Almeida, M. C., Silva, A. C., Barral, A., Barral Netto, M. A simple method for human peripheral blood monocyte isolation. Mem Inst Oswaldo Cruz. 95 (2), 221-223 (2000).
  9. O’Neil-Andersen, N. J., Lawrence, D. A. Differential modulation of surface and intracellular protein expression by T cells after stimulation in the presence of monensin or brefeldin A. Clin Diagn Lab Immunol. 9 (2), 243-250 (2002).
  10. Mannering, S. I., Zhong, J., Cheers, C. T-cell activation, proliferation and apoptosis in primary Listeria monocytogenes infection. Immunology. 106 (1), 87-95 (2002).
  11. Marconi, S., Acler, M., et al. Anti-GD2-like IgM autoreactivity in multiple sclerosis patients. Mult Scler. 12 (3), 302-308 (2006).
  12. Park, J. E., Wu, D. Y., et al. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand. Immunology. 123 (1), 145-155 (2008).
  13. Simon, B. M., Malisan, F., Testi, R., Nicotera, P., Leist, M. Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ. 9 (7), 758-767 (2002).
  14. Beske, O., Reichelt, M., Taylor, M. P., Kirkegaard, K., Andino, R. Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex. J Cell Sci. 120 (18), 3207-3218 (2007).
  15. Zuber, C., Spiro, M. J., Guhl, B., Spiro, R. G., Roth, J. Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol Biol Cell. 11 (12), 4227-4240 (2000).
  16. Yamashiro, S., Okada, M., et al. Expression of (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj J. 12 (6), 894-900 (1995).
  17. Wipfler, D., Srinivasan, G. V., et al. Differentially regulated expression of 9-O-acetyl GD3 (CD60b) and 7-O-acetyl-GD3 (CD60c) during differentiation and maturation of human T and B lymphocytes. Glycobiology. 21 (9), 1161-1172 (2011).
  18. Pukel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., Old, L. J. GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med. 155 (4), 1133-1147 (1982).
check_url/kr/54569?article_type=t

Play Video

Cite This Article
Villanueva-Cabello, T. M., Martinez-Duncker, I. Preparation of CD4+ T Cells for Analysis of GD3 and GD2 Ganglioside Membrane Expression by Microscopy. J. Vis. Exp. (117), e54569, doi:10.3791/54569 (2016).

View Video