Summary

该<em>果蝇</em>成虫盘瘤模型:基因的表达与肿瘤侵袭性的可视化和定量遗传马赛克

Published: October 06, 2016
doi:

Summary

该协议将演示如何生成的果蝇眼睛/触角成虫盘(EAD)荧光标记,基因定义克隆肿瘤。它介绍了如何从第三龄幼虫,以及如何处理它们的可视化和量化基因表达的变化和肿瘤的侵袭性解剖EAD和大脑。

Abstract

Drosophila melanogaster has emerged as a powerful experimental system for functional and mechanistic studies of tumor development and progression in the context of a whole organism. Sophisticated techniques to generate genetic mosaics facilitate induction of visually marked, genetically defined clones surrounded by normal tissue. The clones can be analyzed through diverse molecular, cellular and omics approaches. This study describes how to generate fluorescently labeled clonal tumors of varying malignancy in the eye/antennal imaginal discs (EAD) of Drosophila larvae using the Mosaic Analysis with a Repressible Cell Marker (MARCM) technique. It describes procedures how to recover the mosaic EAD and brain from the larvae and how to process them for simultaneous imaging of fluorescent transgenic reporters and antibody staining. To facilitate molecular characterization of the mosaic tissue, we describe a protocol for isolation of total RNA from the EAD. The dissection procedure is suitable to recover EAD and brains from any larval stage. The fixation and staining protocol for imaginal discs works with a number of transgenic reporters and antibodies that recognize Drosophila proteins. The protocol for RNA isolation can be applied to various larval organs, whole larvae, and adult flies. Total RNA can be used for profiling of gene expression changes using candidate or genome-wide approaches. Finally, we detail a method for quantifying invasiveness of the clonal tumors. Although this method has limited use, its underlying concept is broadly applicable to other quantitative studies where cognitive bias must be avoided.

Introduction

癌代表了最遗传异质组疾病,其发病率和死亡率的显着提高,特别是在老年人全世界之一。癌症从逃脱固有的抑癌机制,并把失控的肿瘤启动细胞克隆起源。遗传病变共同促进生长,增殖和迁移,同时抑制死亡和分化的逐渐积累转化的初始良性增生为高度恶性,转移性和致命的肿瘤。它已成为明显的是,除了遗传改变,肿瘤进展需要在肿瘤和多种细胞类型( 例如 ,成纤维细胞,免疫细胞和内皮细胞)在其微环境之间的周围的基质和串扰的改变。理解的分子原理恶变底层包括肿瘤 – 基质的相互作用是非常重要的发展防止措施灰和早期筛查策略,以及新的和有效的治疗方法,以打击癌症转移和耐药性。

果蝇果蝇已成为癌症研究1-4由于其快速产生时间一个有吸引力的系统,信令苍蝇和人类的促进几乎任何基因操纵在先进遗传工具有限遗传冗余和财富之间节点的显着的保护一个暂时和空间限制的方式。不同的恶性肿瘤的遗传背景明确肿瘤可在果蝇通过使用MARCM技术5在另外的野生型组织中祖细胞的一个子集引入GAIN-和丧失功能的突变再现地工程化。该MARCM工具结合FLP / FRT(FLP重组/ FLP识别目标)介导的有丝分裂重组6 FLP出7和Gal4的/ UAS(上游激活序列)8靶基因表达系统9。与任何基于UAS – 转基因的这种方法的表达,包括原癌基因或荧光蛋白的cDNA或倒置DNA重复对的dsRNA诱导的基因沉默,将被限制到细胞的克隆已经失去一个特定基因座和一个Gal4的阻遏由于重组( 图1A)。标有绿色荧光(GFP)或红色荧光蛋白克隆补丁( 例如,RFP,红色荧光蛋白,mCherry)可以很容易地在整个发展,孤立和分析跟踪。重要的是,它们的行为可以直接比较到相邻的野生型组织。因此,问题相关的所述细胞的遗传病变的自主性和非自主效应可以方便地研究。类似于哺乳动物,只有克隆,其中多个致癌病变被组合成为在果蝇恶性和概括哺乳动物癌细胞的关键特点。他们overproliferate,逃避凋亡,诱发炎症,成仙INVA西伯,最终杀死宿主10-17。

在这里,我们描述了一个协议,使用MARCM技术产生果蝇幼虫的眼睛/触角和脑组织基因定义克隆肿瘤。该方法依赖于一个MARCM仪股票其表达无眼增强剂(eyFLP)18,19的控制下的酵母FLP重组酶。以这种方式,在EAD的两个peripodial和柱状上皮和脑的整个胚胎和幼虫期( 图1A,B和参考20)的神经上皮产生GFP标记的克隆。克隆可以轻松跟随直到成年的EAD发展到成人的眼睛,天线和头壳而神经上皮产生了产生差异化的视叶神经元的神经细胞。

为了方便马赛克组织,我们去的大量分子,功能和表型特征隶从三龄幼虫EAD和大脑的解剖协议,并概述了如何处理它们三个不同的应用程序:(一)检测转基因荧光记者和染色,(二)肿瘤侵袭和(三)分析量化基因表达的变化使用定量实时PCR(QRT-PCR)或高通量的mRNA测序(的mRNA-SEQ)( 图1C)。

免疫染色协议可以用于可视化的任何感兴趣的蛋白质的特异性抗体。转基因荧光转录记者提供对特定信号传导途径的活性方便和精确的时空信息。细胞谱系特异性记者,另一方面,反映镶嵌组织内和不同的基因型的肿瘤中的细胞群体的定性和定量的变化。的入侵行为有利于量化基因型与肿瘤恶性的比较秒。最后,描述用于RNA分离镶嵌EAD的收集和处理的协议,适用于小型和大型的下游应用如逆转录随后分别定量RT-PCR和基因组范围内的mRNA-SEQ。从这些分析得到的定性和定量的数据提供新的见解克隆肿瘤的社会行为。此外,它们产生用于对各个基因,遗传网络和在不同阶段肿瘤微环境和肿瘤发生的各方面的作用,功能研究了坚实的基础。

Protocol

注:该作品利用eyFLP1;法> Y +> Gal4的,UAS-GFP; FRT82B,浴缸,GAL80 MARCM 82B绿线测试仪11。穿越MARCM 82B绿测试处女的菌株如W的男性; UAS-A; UAS-B 的RNAi,FRT82BÇMUT基因型将产生在有丝分裂重组将第三同源染色体的右臂之间发生的后代。以这种方式,克隆对于位于远离FRT82B站点C基因纯合的突变体将在EAD和脑神经上皮内产生。这些克隆将表达绿色荧光蛋?…

Representative Results

为了证明eyFLP-MARCM技术产生在果蝇 EAD定义基因型的GFP标记的补丁的潜力,三种克隆的诱导:(1)控制只表达GFP的,(2)恶性肿瘤表达小的致癌形式在肿瘤抑制基因乱画的纯合损耗(scrib 1)的背景G蛋白的Ras(RAS V12),和(3)过度增长,但非侵入ras基因的V12 scrib 1 JNK DN克隆,其中该君N-末端激酶(JNK)是?…

Discussion

该技术产生在果蝇遗传马赛克是用于分析和操纵基因功能的33最复杂的工具之一。所述eyFLP-MARCM系统已被证明强大和健壮,因为它允许在视觉上标记,遗传背景明确克隆的诱导以空间受限的方式, ,在组织中,其中无眼增强剂是活性9,18。当多种遗传病变在相同的细胞结合,这是特别重要的。虽然这些高度异常的修补程序时只限于EAD和脑部神经上皮使幼虫发?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the Bloomington Stock Center (Bloomington, USA), Dirk Bohmann, Katja Brückner and Istvan Ando for fly stocks, and antibodies. We thank Marek Jindra and Colin Donohoe for comments on the manuscript. This work was supported by the Sofja Kovalevskaja Award to M.U. from the Alexander von Humboldt Foundation and DFG project UH243/1-1 to M.U. from the German Research Foundation.

Materials

Agar Gewürzmühle Brecht, Eggenstein, Germany 00262-0500 Fly food recipe: Prepare 20 L fly food with 160 g agar, 360 g yeast, 200 g soy flour, 1.6 kg yellow cornmeal, 1.2 L malt extract, 300 ml light corn syrup, 130 ml propionic acid and 200 ml 15% nipagin. Fly food should be cooked for 1 hour at 85°C.
Corn syrup Grafschafter Krautfabrik Josef Schmitz KG, Meckenheim, Germany 01939
Propionic acid Carl Roth GmbH, Karlsruhe, Germany 6026.1
Cornmeal ReformKontor GmbH, Zarrentin, Germany 4010155063948
Malt extract CSM Deutschland GmbH, Bremen, Germany 728985
Soy flour Stockmeier Food GmbH, Herford, Germany 1000246441010
Yeast Werner Ramspeck GmbH, Schwabach, Germany 210099K
Methyl-4-benzoate/ Nipagin Sigma-Aldrich, Deisenhofen, Germany H5501 Prepare a 15% stock solution with 70% EtOH
Drosophila fly food vials Kisker Biotech, Steinfurt, Germany 789008
Vial plugs K-TK e.K., Retzstadt, Germany 1002
Drosophila fly food bottles Greiner Bio-One, Frickenhausen, Germany 960177
Bottle plugs K-TK e.K., Retzstadt, Germany 1002 S
Poly(vinyl alcohol) 4-88/[-CH2CHOH-]n Sigma-Aldrich, Deisenhofen, Germany 81381 Mounting medium recipe: Dissolve 6 g Poly(vinyl alcohol) 4-88 in 39 ml Millipore H2O, 6 ml 1 M Tris (pH 8.5) and 12.5 ml glycerol. Stir overnight at 50°C and centrifuge 20 min at 5000 rpm. Add DABCO to the supernatant to get a final concentration of 2.5%. Store aliquots at -20°C.
1,4-Diazabicyclo[2.2.2]octane/ DABCO  Sigma-Aldrich, Deisenhofen, Germany D2522
Triton X-100 Sigma-Aldrich, Deisenhofen, Germany 9002-93-1
Phosphate-buffered saline/ PBS 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4, pH 7.4 in Millipore H2O
PBST 0.1% Triton X-100 in PBS
Paraformaldehyde/ PFA Sigma-Aldrich, Deisenhofen, Germany 158127 4% PFA fixative recipe: Dissolve 4 g PFA in 80 ml Millipore H2O on a magnetic stirrer plate heated to 55 °C. Add 1M NaOH dropwise until all PFA particles are dissolved. Add 10 ml 10X PBS and adjust the pH to 7.4 with 1M HCl. Mix in 100 µl Triton X-100 and fill up with Millipore H2O to 100 ml. Store aliquots at -20°C. Avoid repeated thawing. (CAUTION: PFA is highly toxic. Prepare the PFA fixative in a fume hood. Wear a self-contained breathing apparatus, gloves and clothing. Avoid contact with skin, eyes or mucous membranes)
Bovine Serum Albumin/ BSA Sigma-Aldrich, Deisenhofen, Germany A3059 Blocking solution recipe: Dissolve 0.3% BSA in PBST
4’,6-Diamidino-2-phenylindol Dihydrochlorid/ DAPI Carl Roth GmbH, Karlsruhe, Germany 6335 DAPI staining solution: Prepare a stock solution of 5 mg/ml in Millipore H2O and store aliquots at 4°C. Used in dilution 1:1000 in PBST.
Alexa Flour 546 Phalloidin Invitrogen, Karlsruhe, Germany A22283 Used in dilution 1:500 in PBST.
Mouse anti-H2 antibody Kurucz et al., 2003 Used in dilution 1:500 in blocking solution
Cy5 AffiniPure Donkey Anti-Mouse IgG (H+L) Jackson ImmunoResearch, Suffolk, UK 715-175-151 Used in dilution 1:500 in blocking solution
Dumont #5 forceps Fine Science Tools, Heidelberg, Germany 11295-10
Glass embryo dish (30 mm) Thermo Scientific, Schwerte, Germany E90
Tungsten needles Fine Science Tools, Heidelberg, Germany 10130-20
Nickel Plated Pin Holder Fine Science Tools, Heidelberg, Germany 26018-17
Microscope slides VWR, Darmstadt, Germany 631-1553
Coverslips 22 x 22 mm (#1 Menzel-Gläser) VWR, Darmstadt, Germany 631-1336
Coverslips 24 x 50 mm (0.13-0.16 mm) Thermo Scientific, Schwerte, Germany 1076371
Kimtech Science Precision Wipes Thermo Scientific, Schwerte, Germany 06-677-70
Dissecting stereomicroscope Olympus, Hamburg, Germany SZX7 (DF PLAPO 1X-4 Japan)
Fluorescent stereomicroscope Olympus, Hamburg, Germany SZX16 (SDF PLAPO 0.8X Japan) with DP72 CCD camera Equipped with the narrow blue bandpass filter set for excitation of GFP other blue excitable fluorochromes (excitation filter BP460-480 nm, barrier filter BA495-540 nm) and narrow green excitation and longpass barrier filter for RFP and other green excitable fluorochromes (excitation filter BP530-550, barrier filter BA575IF). Software: Olympus cellSens Standard 1.11.
Confocal microscope Olympus, Hamburg, Germany FV1000 Equipped with inverted IX81 microscope. Objectives: 20× UPlan S-Apo (NA 0.85), 40× UPlanFL (NA 1.30) and 60× UPlanApo (NA 1.35). Lasers: UV laser Diode LD405 (50mW), Argon laser, multi-line 457/(476)/ 488/515 (40mW), Yellow/Green laser diode LD560 (15mW) and Red Laser diode 635 (20mW). Software: Fluoview 2.1c Software
Drosophila cooled incubator Ewald Innovationstechnik GmbH, Bad Nenndorf, Germany  Sanyo MIR553
Squirt bottle VWR, Darmstadt, Germany 215-8105
BD Clay Adams Nutator Mixer VWR, Darmstadt, Germany 15172-203
ELMI Digital Rocking Shaker VWR, Darmstadt, Germany DRS-12
5 PRIME Isol-RNA Lysis Reagent VWR, Darmstadt, Germany 2302700 The protocol is compatible with other TRIzol-based reagents e.g. TRIreagent from Sigma (Cat. Nr.T9424), TRIzol reagent from Thermofisher (Cat. Nr. 15596).
Diethyl pyrocarbonate/ DEPC Sigma-Aldrich, Deisenhofen, Germany D5758 Dilute DEPC 1:1000 in Millipore H2O, stir overnight and autoclave.
UltraPure Phenol:Chloroform:Isoamyl Alcohol (25:24:1) ThermoFischer Scientific, Invitrogen, Karlsruhe, Germany 15593-031
Chloroform Merck, Darmstadt, Germany 102445
TURBO DNase (2 U/µl) Thermo Scientific, Schwerte, Germany AM2238
Invitrogen UltraPure Glycogen ThermoFischer Scientific, Invitrogen, Karlsruhe, Germany 10-814-010
Sodium acetate trihydrate VWR, Darmstadt, Germany 27652.232 Prepare a 3M Sodium acetate solution with DEPC-H2O and adjust the pH to 5.2
2-Propanol Merck, Darmstadt, Germany 109634
Ethanol Merck, Darmstadt, Germany 100983 Prepare a 75% EtOH dilution with DEPC-H2O.
UV/Vis-Spectrophotometre NanoDrop ND-8000 Thermo Scientific, Schwerte, Germany ND-8000
Eppendorf Microcentrifuge (Refrigerated) Thermo Scientific, Schwerte, Germany 5417R
Experion RNA StdSens Analysis Kit Bio-Rad Laboratories GmbH, München, Germany 7007103
Experion Automated Electrophoresis Station Bio-Rad Laboratories GmbH, München, Germany 7007010
SuperScript III Reverse Transcriptase Thermo Scientific, Schwerte, Germany 18080044
Oligo d(T) Primer Integrated DNA Technologies, Leuven, Belgium Prepare 100 µM stock solutions in DEPC-H20 and store at -20°C
dNTP Mixture Takara Bio Europe/Clonetech, Saint-Germain-en-Laye, France 4030 Store aliquots of 25 µl at -20°C
CFX96 Touch Real-Time PCR Detection System Bio-Rad Laboratories GmbH, München, Germany 1855195
iQ SYBR Green Supermix Bio-Rad Laboratories GmbH, München, Germany 170-8882
Hard-Shell PCR Plates 96-well, thin wall Bio-Rad Laboratories GmbH, München, Germany HSP9601
Microseal 'B' Film Bio-Rad Laboratories GmbH, München, Germany MSB1001
rp49 Forward primer Integrated DNA Technologies, Leuven, Belgium 5' TCCTACCAGCTTCAAGATGAC 3'
rp49 Reverse primer Integrated DNA Technologies, Leuven, Belgium 5' CACGTTGTGCACCAGGAACT 3'
mmp1 Forward primer Integrated DNA Technologies, Leuven, Belgium 5' AGGGCGACAAGTACTACAAGCTGA 3'
mmp1 Reverse primer Integrated DNA Technologies, Leuven, Belgium 5' ACGTCTTGCCGTTCTTGTAGGTGA 3'

References

  1. Miles, W. O., Dyson, N. J., Walker, J. A. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech. 4 (6), 753-761 (2011).
  2. Stefanatos, R. K. A., Vidal, M. Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics. 38 (10), 431-438 (2011).
  3. Patel, P. H., Edgar, B. A. Tissue design: How Drosophila tumors remodel their neighborhood. Semin Cell Dev Biol. 28, 86-95 (2014).
  4. Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer. 13 (3), 172-183 (2013).
  5. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24 (5), 251-254 (2001).
  6. Xu, T., Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 117 (4), 1223-1237 (1993).
  7. Struhl, G., Basler, K. Organizing activity of wingless protein in Drosophila. Cell. 72 (4), 527-540 (1993).
  8. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  9. Wu, J. S., Luo, L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc. 1 (6), 2583-2589 (2006).
  10. Brumby, A. M., Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22 (21), 5769-5779 (2003).
  11. Pagliarini, R. A., Xu, T. A genetic screen in Drosophila for metastatic behavior. Science (New York, NY). 302 (5648), 1227-1231 (2003).
  12. Uhlirova, M., Bohmann, D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 25 (22), 5294-5304 (2006).
  13. Turkel, N., et al. The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet. 9 (7), e1003627 (2013).
  14. Cordero, J. B., et al. Oncogenic Ras Diverts a Host TNF Tumor Suppressor Activity into Tumor Promoter. Dev Cell. 18 (6), 999-1011 (2010).
  15. Khoo, P., Allan, K., Willoughby, L., Brumby, A. M., Richardson, H. E. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling. Dis Model Mech. 6, 661-678 (2013).
  16. Jiang, Y., Scott, K. L., Kwak, S. J., Chen, R., Mardon, G. Sds22/PP1 links epithelial integrity and tumor suppression via regulation of myosin II and JNK signaling. Oncogene. 30 (29), 3248-3260 (2011).
  17. Figueroa-Clarevega, A., Bilder, D. Malignant Drosophila Tumors Interrupt Insulin Signaling to Induce Cachexia-like Wasting. Dev Cell. 33 (1), 47-55 (2015).
  18. Newsome, T. P., Asling, B., Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development. 127 (4), 851-860 (2000).
  19. Quiring, R., Walldorf, U., Kloter, U., Gehring, W. J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 265 (5173), 785-789 (1994).
  20. Külshammer, E., Uhlirova, M. The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci. 126 (Pt 4), 927-938 (2013).
  21. North, A. J. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol. 172 (1), 9-18 (2006).
  22. Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol. 185 (7), 1135-1148 (2009).
  23. Igaki, T., Pagliarini, R. A., Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol. 16 (11), 1139-1146 (2006).
  24. Külshammer, E., et al. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech. 8 (10), 1279-1293 (2015).
  25. Pastor-Pareja, J. C., Wu, M., Xu, T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech. 1 (2-3), 144-154 (2008).
  26. Chatterjee, N., Bohmann, D. A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PloS One. 7 (4), e34063 (2012).
  27. Petraki, S., Alexander, B., Brückner, K. Assaying Blood Cell Populations of the Drosophila melanogaster Larva. J Vis Exp. (105), (2015).
  28. Makhijani, K., Alexander, B., Tanaka, T., Rulifson, E., Bruckner, K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development. 138 (24), 5379-5391 (2011).
  29. Kurucz, E., et al. Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc Natl Acad Sci USA. 100 (5), 2622-2627 (2003).
  30. Andersen, D. S., et al. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature. 522 (7557), 482-486 (2015).
  31. Srivastava, A., Pastor-Pareja, J. C., Igaki, T., Pagliarini, R., Xu, T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc Natl Acad Sci USA. 104 (8), 2721-2726 (2007).
  32. Larionov, A., Krause, A., Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 6 (1), (2005).
  33. Blair, S. S. Genetic mosaic techniques for studying Drosophila development. Development. 130 (21), 5065-5072 (2003).
  34. Mirth, C. K., Shingleton, A. W. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front Endocrinol. 3 (49), (2012).
  35. French, V., Feast, M., Partridge, L. Body size and cell size in Drosophila: the developmental response to temperature. J Insect Physiol. 44 (11), 1081-1089 (1998).
  36. Ashburner, M., Bonner, J. J. The induction of gene activity in drosophila by heat shock. Cell. 17 (2), 241-254 (1979).
  37. Frazier, M. R., Woods, H. A., Harrison, J. F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol Biochem Zool. 74 (5), 641-650 (2001).
  38. Lai, S. L., Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci. 9 (5), 703-709 (2006).
  39. Potter, C. J., Tasic, B., Russler, E. V., Liang, L., Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell. 141 (3), 536-548 (2010).
  40. del Valle Rodrìguez, A., Didiano, D., Desplan, C. Power tools for gene expression and clonal analysis in Drosophila. Nature Methods. 9 (1), 47-55 (2011).
  41. Rynes, J., et al. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis. Mol Cell Biol. 32 (19), 3949-3962 (2012).
  42. Claudius, A. K., Romani, P., Lamkemeyer, T., Jindra, M., Uhlirova, M. Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet. 10 (4), e1004287 (2014).
  43. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of Specific Cell Population by Fluorescence Activated Cell Sorting (FACS). J Vis Exp. (41), (2010).
  44. Tauc, H. M., Tasdogan, A., Pandur, P. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging. J Vis Exp. (94), (2014).
check_url/kr/54585?article_type=t

Play Video

Cite This Article
Mundorf, J., Uhlirova, M. The Drosophila Imaginal Disc Tumor Model: Visualization and Quantification of Gene Expression and Tumor Invasiveness Using Genetic Mosaics. J. Vis. Exp. (116), e54585, doi:10.3791/54585 (2016).

View Video