Summary

The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering

Published: November 02, 2016
doi:

Summary

We describe a microsurgical approach for the generation of an arteriovenous (AV) loop as a model for analyzing vascularization in vivo in an isolated and well-characterized environment. This model is not only useful for the investigation of angiogenesis, but is also optimally suited for engineering axially vascularized and transplantable tissues.

Abstract

A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine.

We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment.

In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient’s needs.

Introduction

Most tissues and organs in the human body are dependent on a functional blood vessel network that supplies nutrients, exchanges gases and removes waste products. Malfunction of this system caused by local or systemic vascular problems can lead to a multitude of severe diseases. Moreover, in research areas such as tissue engineering or regenerative medicine, a functional blood vessel network within artificially generated tissues or transplanted organs is indispensable for successful clinical application.

For decades researchers have been investigating the exact mechanisms involved in the growing vasculature to gain deeper insight into pathological situations in order to find novel therapeutic interventions and provide better prevention of vascular disorders. In the first step, basic processes such as cell-cell interactions or the effect of molecules on cells of the vascular system are usually investigated by in vitro 2D or 3D experiments. Traditional 2D models are easy to perform, are well established and have contributed greatly to a better understanding of these processes. For the first time in 1980, Folkman et al. reported in vitro angiogenesis seeding of capillary endothelial cells on gelatin coated plates1. This immediately gave way to publication of a multitude of further 2D angiogenesis experiments on endothelial cell tube formation assay2, migration assay3 and the co-culturing of different cell types4, as well as others. These assays are still used today and accepted as standard in vitro methods.

However, this experimental setup is not always appropriate for the study of in vivo cell behavior since most cell types require a 3D environment to form relevant physiological tissue structures5. It could be shown that the architecture of the 3D matrix is decisive for capillary morphogenesis6 and that cell-extra cellular matrix (ECM) interactions and 3D culture conditions regulate important factors involved in tumor angiogenesis7. The 3D matrix provides complex mechanical inputs, can bind effector proteins and establish tissue-scale solute concentration gradients. Moreover, it is considered necessary in order to imitate in vivo morphogenetic and remodeling steps in complex tissues5. In these systems, both angiogenesis and vasculogenesis can be studied. While angiogenesis describes the sprouting of capillaries from preexisting blood vessels8, vasculogenesis refers to the de novo formation of blood vessels through endothelial cells or their progenitors9,10. Maturation of vessels is described in a process called 'arteriogenesis' via recruitment of smooth muscle cells11. A typical angiogenic in vitro model is the sprouting of endothelial cells from existing monolayers seeded as a monolayer on gel surfaces, on surface of microspheres embedded within a gel or by building endothelial cell spheroids12. In vasculogenic models single endothelial cells are entrapped in a 3D gel. They interact with adjacent endothelial cells to form vascular structures and networks de novo, typically in combination with supportive cells12.

However, even complex 3D in vitro models cannot mimic in vivo settings completely given the multitude of cell-cell and cell-ECM interactions13. Substances with high in vitro activity do not automatically show the same effects in vivo and vice versa14. For a comprehensive analysis of vascularization processes there is an urgent need to develop in vivo models that better simulate the situation in the body. A large range of in vivo angiogenesis assays are described in the literature, including the chick chorioallantoic membrane assay (CAM), the zebrafish model, the corneal angiogenesis assay, the dorsal air sac model, the dorsal skinfold chamber, the subcutaneous tumor models14. However, these assays are often associated with limitations, such as rapid morphological changes, problems in distinguishing new capillaries from already existing ones in the CAM assay, or the limited space in the corneal angiogenesis assay15. Furthermore, non-mammalian systems are used (e.g., the zebrafish model16), which leads to problems in xenotransplantation17. In the subcutaneous tumor model, angiogenesis originating only from the tumor itself cannot be analyzed since the adjacent tissue greatly contributes to the vascularization process. Moreover, the surrounding tissue can have a decisive role in shaping the tumor microenvironment18.

Not only for studying angiogenesis or vasculogenesis is there a strong need for a standardized and well-characterized in vivo model but also for studying different vascularization strategies in tissue engineering and regenerative medicine. Today, the generation of complex artificial organs or tissues is possible both in vitro and in vivo. 3D bioprinting provides an on-demand fabrication technique for generating complex 3D functional living tissues19. Furthermore, bioreactors can be used for generating tissues20 or even the own body can be used as bioreactor21. However, the main barrier to successful application of artificially generated tissues is the lack of vascularization within the engineered constructs. Immediate connection to the host's vasculature after transplantation is a major prerequisite for survival, especially in the case of large-scale artificial tissues or organs.

Different in vitro or in vivo prevascularization strategies were developed to establish a functional microvasculature in constructs prior to implantation22. The implantation of a scaffold with in vitro preformed engineered capillaries onto the dorsal skin of mice led to rapid anastomosis of the mice vasculature within a day23. In contrast, a spheroid co-culture consisting of human mesenchymal stem cells and human umbilical vein endothelial cells assembled into a three-dimensional prevascular network developed further after in vivo implantation. However, anastomosis with the host vasculature was limited24. Above all, in poorly vascularized defects, such as necrotic or irradiated areas, this so-called extrinsic vascularization — the ingrowth of vessels from the surrounding area into the scaffold — often fails. Intrinsic vascularization, on the other hand, is based on a vascular axis as a source of new capillaries sprouting into the scaffold25. Using the axial vascularization approach, the engineered tissue can be transplanted with its vascular axis and connected to local vessels at the recipient site. Immediately after transplantation, the tissue is adequately supported by oxygen and nutrients, which creates the right conditions for optimal integration.

Due to the limited availability of models for investigating in vivo angiogenesis and in recognition of the growing importance of generating axially vascularized tissue, we developed the microsurgical approach of Erol and Spira further to generate an arteriovenous (AV) loop in the animal model26. The use of a completely closed implantation chamber makes this method very well suited to study blood vessel formation under "controlled", well characterized in vivo conditions (Figure 1). This model is not only useful for the investigation of angiogenesis but is also optimally suited for the axial vascularization of scaffolds for tissue engineering purposes.

Protocol

The Animal Care Committee of the Friedrich-Alexander University of Erlangen-Nürnberg (FAU) and the Government of Middle Franconia, Germany, approved all the experiments. For the experiments, male Lewis rats with a body weight of 300 – 350 g were used. 1. The Arteriovenous Loop Model in the Rat Implantation Procedure (Figure 2) For anesthesia use a special plastic box that is connected via tube to the isoflurane vaporizer and closed by a lid. Turn on supply gas…

Representative Results

Tissue Engineering For bone tissue engineering purposes, a number of different bone substitutes were implanted in the small animal rat AV loop model27,28,33,34. Vascularization could perfectly be demonstrated by 3D micro-computed tomography (micro-CT) (Figure 3A). Vascularization of a processed bovine cancellous bone (PBCB) matrix was significantly higher in the loop group compared to the group without vascularization. A constantly growi…

Discussion

For over a decade, we have successfully used the arteriovenous (AV) loop for tissue engineering purposes and studying angiogenesis in vivo in the small animal model. We could demonstrate that this microsurgical model is very well suited for engineering different tissues and that it can also be used for angiogenesis or antiangiogenesis studies.

Significance of the Technique with Respect to Existing/Alternative Methods
Engineered tissues or organs require a functi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank the following institutions for supporting our AV loop research: Staedtler Stiftung, Dr. Fritz Erler Fonds, Else Kröner Fesenius Stiftung, Baxter Healthcare GmbH, DFG, IZKF/ELAN/EFI/Office for Gender and Diversity, the Forschungsstiftung Medizin, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), AO Foundation, Manfred Roth Stiftung, Xue Hong, Hans Georg Geis Foundation, Deutscher Akademischer Austauschdienst (DAAD), Germany, and the Ministry of Higher Education and Scientific Research, Iraq. We would like to thank Stefan Fleischer, Marina Milde, Katrin Köhn and Ilse Arnold-Herberth for their excellent technical support.

Materials

0.9% sodium chloride Berlin-Chemie AG 34592508
11-0 Ethilon / polyamide 6/6 Ethicon EH7438G
4-0 Vicryl / polygalactin 910 Ethicon V392H
6-0 Prolene / polypropylene Ethicon 8695H
aluminium spray Pharma Partner Vertriebs-GmbH 1020
antiseptics  BODE Chemie GmbH 
Catheter  B Braun Meslungen AG 4251612-02
contrast agent Flowtech  MV-122
embutramide, mebezonium iodide, tetracaine hydrochloride injectable solution  Intervet International GmbH
encre de chine intense indian ink Lefranc & Bourgeois 
Enrofloxacin  Bayer AG
eye ointment  Bayer AG
Formalin 4 %  Carl Roth GmbH & Co. KG P087.4
Heparin Ratiopharm GmbH
isoflurane  Abbott Laboratories 6055482
Lewis rat, male Charles River Laboratories
Metamizol-Natrium  Ratiopharm GmbH
papaverine / Paveron N Linden Arzneimittel-Vertrieb-GmbH
tramadol / Tramal Grünenthal GmbH

References

  1. Folkman, J., Haudenschild, C. Angiogenesis in vitro. Nature. 288 (5791), 551-556 (1980).
  2. DeCicco-Skinner, K. L., et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp. (91), e51312 (2014).
  3. Puddu, A., Sanguineti, R., Traverso, C. E., Viviani, G. L., Nicolo, M. Response to anti-VEGF-A treatment of endothelial cells in vitro. Exp Eye Res. 146, 128-136 (2016).
  4. Li, H., Daculsi, R., Bareille, R., Bourget, C., Amedee, J. uPA and MMP-2 were involved in self-assembled network formation in a two dimensional co-culture model of bone marrow stromal cells and endothelial cells. J Cell Biochem. 114 (3), 650-657 (2013).
  5. Griffith, L. G., Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 7 (3), 211-224 (2006).
  6. Nehls, V., Herrmann, R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res. 51 (3), 347-364 (1996).
  7. Fischbach, C., et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A. 106 (2), 399-404 (2009).
  8. Logsdon, E. A., Finley, S. D., Popel, A. S., Mac Gabhann, F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 18 (8), 1491-1508 (2014).
  9. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tissue Eng Part B Rev. 15 (2), 159-169 (2009).
  10. Risau, W. Mechanisms of angiogenesis. Nature. 386 (6626), 671-674 (1997).
  11. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6 (4), 389-395 (2000).
  12. Morin, K. T., Tranquillo, R. T. In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res. 319 (16), 2409-2417 (2013).
  13. Ucuzian, A. A., Greisler, H. P. In vitro models of angiogenesis. World J Surg. 31 (4), 654-663 (2007).
  14. Staton, C. A., Reed, M. W., Brown, N. J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 90 (3), 195-221 (2009).
  15. Tahergorabi, Z., Khazaei, M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 15 (6), 1110-1126 (2012).
  16. Agostini, S., et al. Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J Cell Mol Med. 19 (1), 227-238 (2015).
  17. Zhang, B., Xuan, C., Ji, Y., Zhang, W., Wang, D. Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer. 14 (3), 487-493 (2015).
  18. Devaud, C., et al. Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Mol Ther. 22 (1), 18-27 (2014).
  19. Min, Z., Shichang, Z., Chen, X., Yufang, Z., Changqing, Z. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis. Biomater Sci. 3 (8), 1236-1244 (2015).
  20. Sundaram, S., et al. Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med. 3 (12), 1535-1543 (2014).
  21. Hori, A., Agata, H., Takaoka, M., Tojo, A., Kagami, H. Effect of Cell Seeding Conditions on the Efficiency of In Vivo Bone Formation. Int J Oral Maxillofac Implants. 31 (1), 232-239 (2016).
  22. Laschke, M. W., Menger, M. D. Prevascularization in tissue engineering: Current concepts and future directions. Biotechnol Adv. , (2015).
  23. Wong, H. K., et al. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers. Biofabrication. 8 (1), 015004 (2016).
  24. Rouwkema, J., de Boer, J., Van Blitterswijk, C. A. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12 (9), 2685-2693 (2006).
  25. Lokmic, Z., Mitchell, G. M. Engineering the microcirculation. Tissue Eng Part B Rev. 14 (1), 87-103 (2008).
  26. Erol, O. O., Spira, M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 30, 530-531 (1979).
  27. Arkudas, A., et al. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods. 19 (6), 479-486 (2013).
  28. Arkudas, A., et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 13 (7), 1549-1560 (2007).
  29. Arkudas, A., et al. Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis. 23 (5), 419-427 (2012).
  30. Arkudas, A., et al. Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A. 15 (9), 2501-2511 (2009).
  31. Arkudas, A., et al. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol Med. 13 (9-10), 480-487 (2007).
  32. Buehrer, G., et al. Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A. 21 (1-2), 96-105 (2015).
  33. Kneser, U., et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 12 (7), 1721-1731 (2006).
  34. Arkudas, A., et al. Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast Reconstr Surg. 129 (1), 55e-65e (2012).
  35. Bach, A. D., et al. A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med. 10 (3), 716-726 (2006).
  36. Bitto, F. F., et al. Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. Biomed Res Int. 2013, 935046 (2013).
  37. Fiegel, H. C., et al. Foetal hepatocyte transplantation in a vascularized AV-Loop transplantation model in the rat. J Cell Mol Med. 14 (1-2), 267-274 (2010).
  38. Polykandriotis, E., et al. The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res. 75 (1), 25-33 (2008).
  39. Polykandriotis, E., et al. Regression and persistence: remodelling in a tissue engineered axial vascular assembly. J Cell Mol Med. 13 (10), 4166-4175 (2009).
  40. Yuan, Q., et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol. 14, 112 (2014).
  41. Dew, L., MacNeil, S., Chong, C. K. Vascularization strategies for tissue engineers. Regen Med. 10 (2), 211-224 (2015).
  42. Kang, Y., Mochizuki, N., Khademhosseini, A., Fukuda, J., Yang, Y. Engineering a vascularized collagen-beta-tricalcium phosphate graft using an electrochemical approach. Acta Biomater. 11, 449-458 (2015).
  43. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 63 (4-5), 300-311 (2011).
  44. Zimmerer, R., Jehn, P., Spalthoff, S., Kokemuller, H., Gellrich, N. C. Prefabrication of vascularized facial bones. Chirurg. 86 (3), 254-258 (2015).
  45. Dunda, S. E., et al. In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure. Handchir Mikrochir Plast Chir. 47 (6), 378-383 (2015).
  46. Tanaka, Y., et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?. Plast Reconstr Surg. 112 (6), 1636-1644 (2003).
  47. Dong, Q. S., et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model. Mater Sci Eng C Mater Biol Appl. 32 (6), 1536-1541 (2012).
  48. Polykandriotis, E., et al. Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir. 38 (4), 217-223 (2006).
  49. Mofikoya, B. O., Ugburo, A. O., Bankole, O. B. Does open guide suture technique improve the patency rate in submillimeter rat artery anastomosis?. Handchir Mikrochir Plast Chir. 46 (2), 105-107 (2014).
  50. Manasseri, B., et al. Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery. 27 (7), 623-629 (2007).
  51. Moimas, S., et al. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue. J Tissue Eng. 6, (2015).
  52. Fan, J., et al. Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. Biomed Res Int. 2014, 281872 (2014).
  53. Bleiziffer, O., et al. Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct. BMC Biotechnol. 12, 94 (2012).
  54. Horch, R. E., et al. Cancer research by means of tissue engineering–is there a rationale?. J Cell Mol Med. 17 (10), 1197-1206 (2013).
  55. Lee, H. Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul). 22 (4), 267-274 (2014).
  56. Willey, C. D., Gilbert, A. N., Anderson, J. C., Gillespie, G. Y. Patient-Derived Xenografts as a Model System for Radiation Research). Semin Radiat Oncol. 25 (4), 273-280 (2015).
  57. Guiro, K., Arinzeh, T. L. Bioengineering Models for Breast Cancer Research. Breast Cancer (Auckl). 9 (Suppl 2), 57-70 (2015).
  58. Ghajar, C. M., Bissell, M. J. Tumor engineering: the other face of tissue engineering. Tissue Eng Part A. 16 (7), 2153-2156 (2010).
  59. Boos, A. M., et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 7 (8), 654-664 (2013).
  60. Weigand, A., et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 21 (9-10), 1680-1694 (2015).
  61. Horch, R. E., Beier, J. P., Kneser, U., Arkudas, A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med. 18 (7), 1478-1485 (2014).
check_url/kr/54676?article_type=t

Play Video

Cite This Article
Weigand, A., Beier, J. P., Arkudas, A., Al-Abboodi, M., Polykandriotis, E., Horch, R. E., Boos, A. M. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. J. Vis. Exp. (117), e54676, doi:10.3791/54676 (2016).

View Video