Summary

药品再利用产生假设使用“RE:精药品”系统

Published: December 11, 2016
doi:

Summary

Here we describe a protocol using the web-based drug repurposing hypothesis generation tool: “RE:fine Drugs.” This protocol can be modified to a user’s preferences at the level of the query type (gene, drug or disease) and/or the range of available advanced options.

Abstract

The promise of drug repurposing is that existing drugs may be used for new disease indications in order to curb the high costs and time for approval. The goal of computational methods for drug repurposing is to enable solutions for safer, cheaper and faster drug discovery. Towards this end, we developed a novel method that integrates genetic and clinical phenotype data from large-scale GWAS and PheWAS studies with detailed drug information on the concept of transitive Drug-Gene-Disease triads. We created “RE:fine Drugs,” a freely available, interactive dashboard that automates gene, disease and drug-based searches to identify drug repurposing candidates. This web-based tool supports a user-friendly interface that includes an array of advanced search and export options. Results can be prioritized in a variety of ways, including but not limited to, biomedical literature support, strength and statistical significance of GWAS and/or PheWAS associations, disease indications and molecular drug targets. Here we provide a protocol that illustrates the functionalities available in the “RE:fine Drugs” system and explores the different advanced options through a case study.

Introduction

与传统药物发现方法,包括高通量药物和先导化合物筛选相关的昂贵和低效的过程,是造成延误翻译研究发现转化为治疗病人1,2。 1十亿美元和15 – 20年的平均时需携带从板凳上一个新的药物床边3。此外,药品52%的第一阶段临床试验在开发过程中失败了,只有25%即进入第二阶段的化合物进行充分三期临床研究4。再利用药物或药物重新定位的目标是续约失败的药物和/或找到批准的药品适应症新颖,以提供新的治疗方法给患者更快的速度和更高的成功率。药品再利用可能会降低时间表,使现有的药物在患者中使用,以3-12岁5。药品再利用的重要医疗应用包括:与差PROGNOS疾病是低存活率,抗药性疾病,资金不足的疾病的研究领域和贫困和缺医少药的病人群体。

计算药物再利用被定义为设计和验证自动化的工作流程,可以生成用于为候选药物6新适应症假设的过程。现有的计算药物再利用的方法已被归类目标为基础,以知识为基础的,基于签名的,基于网络和基于目标的机制,并可以从基因,疾病或药物的角度来导向。此外,计算方法可能会进一步加速证明了概念验证性实验和小规模临床研究为改变用途的候选药物7。我们曾报道的“RE:精药品”,一个免费的,互动式的网上药品再利用产生假设基于药物基因与疾病的关系8的传递理论工具。整体摹这种方法的OAL是系统集成不同类型的药物,遗传和临床资料,以使药物再利用从不同的社区,包括临床,工业和监管社区用户。该系统的基本方法先前已经报道了利用全基因组关联分析(GWAS),并在药物phenome范围内的关联研究(PheWAS)数据再利用的研究9,10。这些类型的数据的新组合,我们区别于其他基于目标的方法6,11 webtool。

该RE:精药物制度目前包含60911药物再利用假设覆盖916药品,567个基因和1,770疾病。该webtool为研究人员提供交互式搜索药物重复利用的假设和使用不同的标准优先考虑他们一个友好的用户界面。例如,用户可以过滤药物再利用假设用在生物医学文献支持和临床试验databaSE,显著p值,关联比值比或具体指示。此系统的唯一要求是上网。

Protocol

1.基因查询发起,药物或疾病条款通过以下链接:http://drug-repurposing.nationwidechildrens.org:访问为“精药品RE”的主页。药(仿制药名),疾病(新病指示)或基因(官方HGNC基因符号):由从任何以下三类进入搜索栏查询词开头。 过滤搜索栏的功能,只包括“药品名称”,“新疾病适应症”,“基因符号”或“全部”类别。搜索栏包括查询条目自动填充功能。 放在一个关键字,然后点击“搜索”按钮。排序通过以下任一列的结果表:“药品”,“注册指示”,“P值”,“P-值来调整”,“胜算比”,“研究”,“新标识”,“药品银行指示“,”MEDLINE文摘#“,”CLI命令#nical试验注册中心“,”势“,”SNP“,”基因“或”行动“。 导航到高级搜索选项,以使药品信息功能。在“信息”栏中点击图标为一个特定的药物。观察一个网页,列出所有相应的信息,包括对价值关联,疾病名称,药品名称,基因信息(NCBI基因链接)药品的详细信息(DrugBank链接)。 2.高级选项的探索点击位于页面的右侧的“高级”按钮,并提供多种选择,以进一步缩小的结果。高级搜索选项包括修改如下:药物,协会,疾病,潜在的基因和行动。 出口通过点击页面右侧的“导出”按钮,结果表。点击以向下折叠高级搜索窗口中的“简单”按钮。</ LI> 在高级选项“毒品”选项卡中,指定特定的药物适应症或额外的药名来筛选结果。 在“关联”选项卡中,筛选的显着性水平P值,调整后的P值与FDR,影响大小(比值比),和/或研究型(GWAS,PheWAS或两者)。 在“治未病”选项卡中,指定新的预测使用某种疾病的描述。 下的“潜在”标签中,根据以下任一条件过滤结果:(i)药物指示是否被包含在DrugBank数据库,(ⅱ)数量MEDLINE摘要与药物的共现和疾病中,( ⅲ)数量与药物的共现和疾病以及(iv)重新利用潜在ClinicalTrials.gov数据库条目。 注:重新为潜在选项描述了发现的新颖性:(一)已知:关系已存在于数据库DrugBank,(二)大力支持:一些支持在临床试验注册和MEDLINE摘要;(三)可能是:一些支持在任何临床试验注册表或MEDLINE摘要及(iv)小说:在临床试验注册也不在MEDLINE摘要没有证据。 在“基因”标签,输入SNP标识符或基因符号,以滤除特定的药物靶基因的结果。 在“操作”选项卡,指定打击毒品目标(S),其中包括激动剂,拮抗剂等,未知或全部(来源:DrugBank数据库)药物作用的类型。

Representative Results

在这个例子中,基因“IL2RB”被输入为基于基因的查询,以及由自动填充功能( 图1)中的自动识别。对于IL2RB基因十二药物重新利用假设被返回, 如图2。对于特定的药物再利用假说“,达珠单抗”在这种情况下,详细信息页,从“信息”栏( 图3)提供。结果被过滤的药物标签是通过对应于“赛尼哌”药物的所有结果, 如图4。 图5显示了只有这些药物具有已知的指示,为“移植”长期疾病(来源:DrugBank数据库)。关联选项卡允许用户过滤通过统计学意义(P值)和遗传效应大小(比值比),SNP-表型的关系,限定为公关的几率的比率在与特定基因型(SNP等位基因)以上的个体疾病的存在的可能性,而不与SNP等位基因的个体的疾病的esence。 图6示出的P值范围内的关联标签下过滤的0.000001至0.05的结果。 图7显示了具体的基础上,我们在研究中发现的新适应症“哮喘”药品再利用假设。 图8表示的电位标签下的结果通过含有的药物和疾病方面共现5 MEDLINE摘要的最小数目进行过滤。在这个例子中,基因标签下所有药物的结果针对所述“IL2RB”基因,对应于原始查询字词( 图9)。最后,“行动”选项卡下过滤, 如图 10所示的成绩来回报充当对IL2RB基因兴奋剂所有药物。 <img alt="图1"src ="“/文件/" ftp_upload > 图1:RE:精药品的交互式仪表板主页。用户可以通过输入药品名称,新的疾病指示或基因符号开头的查询。还提供了用于说明用于产生药物再利用假设方法的GWAS和PheWAS参考文件的链接。 请点击此处查看该图的放大版本。 图 2: 查询条目自动填充功能。作为一个例子,所述基因查询词“IL2RB”被自动识别为一个基因术语。 请点击此处查看该图的放大版本。 <p类=“jove_content”FO: – together.within页保留=“1”> 图3: 从基于基因的查询( 例如,IL2RB)产生药物再利用的结果的表。对于IL2RB基因药物十二假设再利用产生。 请点击此处查看该图的放大版本。 图4:从结果页个别药物信息页面。点击从“信息”列中的图标显示为药物达珠单抗的详细信息。 请点击此处查看该图的放大版本。 <p class="jove_content" fo:keep-together.within页="“1”"> 图5: 药品标签下的高级搜索选项通过特定的药物进行筛选。在此示例中,三个结果示为药物达珠单抗。 请点击此处查看该图的放大版本。 图6: 药品标签下的高级搜索选项从DrugBank数据库中的特定疾病的指示进行过滤。与用于疾病的术语“移植”公知的指示所有药物被示出。 请点击此处查看该图的放大版本。 <p class="jove_content" fo:keep-together.within页="“1”"> 图7:关联选项卡下的高级搜索选项,通过显着性水平进行筛选。在这种情况下,设置八个结果其关联显着性水平的0.000001至0.05的P值范围内。 请点击此处查看该图的放大版本。 图8: 疾病标签下高级搜索选项,通过我们在本研究中提取一个特定的疾病的指示进行筛选。在这个例子中,四结果示哮喘作为新使用的疾病的指示。 请点击此处查看大VERSI这个数字的。 图9: 潜在选项卡下的高级搜索选项,通过在MEDLINE摘要药物和疾病方面共现过滤。在这个例子中,四结果示由含有的药物和疾病方面共现5 MEDLINE摘要的最小数目的支持。 请点击此处查看该图的放大版本。 图10: 基因标签下高级搜索选项由特定基因符号,其中所有结果对应于用于原始查询IL2RB基因进行筛选。在这个例子中,所有的药物的结果该基因标签下被定位为“IL2RB”基因,对应于原始查询字词。操作选项卡下的高级搜索选项只受体激动剂的药物筛选。在这个例子中,六结果返回为充当对IL2RB基因激动剂所有药物。 请点击此处查看该图的放大版本。

Discussion

The protocol described here for the RE:fine Drugs interactive dashboard can be modified in different ways according to the user’s preferences. This method uniquely integrates GWAS and PheWAS data as a novel paradigm underlying drug repurposing hypothesis generation. Specifically, this system provides access to both 52,966 PheWAS associations and 7,945 GWAS associations with advanced options to filter the results by the study type, effect size and/or significance level. Another advantage of this method over existing computational drug repurposing tools is that queries may be made from drug, gene or disease perspectives.

There are several limitations to this method. Currently, the PheWAS data is limited to primarily adult patient population from five institutions contained in the Electronic Medical Records and Genomics (eMERGE) network with a mean age of 69.5 years 12. Additionally, the “repurposing potential” feature uses co-occurrence of search terms in Medline abstracts as one of its criteria. It is well known that text mining methods using co-occurrence have limitations with respect to syntactical structure and literature bias. Thus, we recommend this feature be used as a starting point to explore the potential novelty and/or evidence supporting specific drug repurposing hypotheses and recommend additional investigation into the biomedical literature and clinical trial databases.

Future directions for this work not described here would be to extend this database to additional sources of GWAS and PheWAS data as they become available. Similar efforts to systematically translate results from large-scale GWAS studies into drug repurposing hypotheses have been previously published 9,13-14. It may be useful to compare these different workflows to predict drug candidates from GWAS data in future studies. Additionally, several other methods exist to computationally generate drug repurposing hypotheses from different data sources, including: genomics, transcriptomics, chemical structures, drug side effect profiles, as previously summarized 6,11. Future methodological advancements could also include automating drug combination predictions and providing information on drug toxicity to guide follow up studies for drug candidates.

Furthermore, the hypotheses generated from RE:fine Drugs may be further validated using electronic health records, before initiating clinical trials 15. Finally, future studies will be needed to compare this system to other target-based drug repurposing methods.

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was partially supported by the National Institutes of Health (NIH) Clinical and Translational Science Awards (CTSA) Grant (UL1TR001070) to the Ohio State University’s Center for Clinical and Translational Science (CCTS) and the National Library Of Medicine under Award Number T15LM011270.

Materials

Access the homepage for “RE:fine Drugs” at the following link: http://drug-repurposing.nationwidechildrens.org.  n/a n/a The only requirement for this system is Internet access

References

  1. Borisy, A. A., et al. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A. 100 (13), 7977-7982 (2003).
  2. Zhang, L., et al. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A. 104 (11), 4606-4611 (2007).
  3. Adams, C. P., Brantner, V. V. Estimating the cost of new drug development: is it really 802 million dollars?. Health Aff (Millwood). 25 (2), 420-428 (2006).
  4. Bunnage, M. E. Getting pharmaceutical R&D back on target. Nat Chem Biol. 7 (6), 335-339 (2011).
  5. Ashburn, T. T., Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 3 (8), 673-683 (2004).
  6. Hurle, M. R., et al. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 93 (4), 335-341 (2013).
  7. Jin, G., Wong, S. T. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 19 (5), 637-644 (2014).
  8. Moosavinasab, S., et al. 34;RE:fine Drugs": An Interactive Dashboard to Access Drug Repurposing Opportunities. Database (Oxford). , (2016).
  9. Zhang, J., et al. Use of genome-wide association studies for cancer research and drug repositioning. PLoS One. 10 (3), e0116477 (2015).
  10. Rastegar-Mojarad, M., Ye, Z., Kolesar, J. M., Hebbring, S. J., Lin, S. M. Opportunities for drug repositioning from phenome-wide association studies. Nat Biotechnol. 33 (4), 342-345 (2015).
  11. Li, J., et al. A survey of current trends in computational drug repositioning. Brief Bioinform. 17 (1), 2-12 (2016).
  12. Denny, J. C., et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 31 (12), 1102-1110 (2013).
  13. Wang, H., et al. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: Where a recommendation system meets genome-wide association studies. Clin Pharmacol Ther. 97 (5), 451-454 (2015).
  14. Sanseau, P., et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 30 (4), 317-320 (2012).
  15. Xu, H., et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc. 22 (1), 179-191 (2015).
check_url/kr/54948?article_type=t&slug=drug-repurposing-hypothesis-generation-using-the-refine-drugs-system

Play Video

Cite This Article
Regan, K., Moosavinasab, S., Payne, P., Lin, S. Drug Repurposing Hypothesis Generation Using the “RE:fine Drugs” System. J. Vis. Exp. (118), e54948, doi:10.3791/54948 (2016).

View Video