Summary

综合程序,以评估<em>在体内</em>癌症纳米医学的性能

Published: March 04, 2017
doi:

Summary

The poor understanding of the in vivo performance of nanomedicines stymies their clinical translation. Procedures to evaluate the in vivo behavior of cancer nanomedicines at systemic, tissue, single-cell, and subcellular levels in tumor-bearing immunocompetent mice are described here. This approach may help researchers to identify promising cancer nanomedicines for clinical translation.

Abstract

在诊所以前的癌症纳米医学的成功的启发,研究人员已经在过去的十年中产生了大量新的配方。然而,只有纳米医学少数已被批准用于临床使用,而根据临床开发的大多数纳米医学的已产生令人失望的结果。到的新的癌症纳米医学成功临床翻译的一个主要障碍是缺乏其在体内表现的准确理解。本文设有严格的程序通过正电子发射断层扫描,计算机断层扫描(PET-CT),放射性量化方法的整合来表征在全身性的,组织,单细胞,和亚细胞水平荷瘤小鼠纳米医学的体内行为,流式细胞仪,荧光显微镜。使用这种方法,研究人员可以准确地评价着性相关的小鼠模型的新纳米制剂河这些协议可以具有高平移电位,以确定最有前途的癌症纳米医学或癌症纳米医学的供将来翻译优化以帮助的能力。

Introduction

纳米医学正在改变癌症治疗的发展1的范例。由以前的癌症纳米医学,如脂质体和基于白蛋白nanotherapies 2,3的巨大临床影响的启发,许多新的配方已在过去十年中产生的。然而,最近这些癌症纳米医学的临床转化成功的分析表明,只有少数已被批准用于临床4,5。以新的癌症纳米医学临床翻译的一个主要障碍是有限的治疗指数的提高与自由治疗化合物6直接管理比较。如在临床前动物模型中在全身性的,组织纳米医学,和细胞水平的体内性能等,准确的评价是IDENTIF必不可少Ÿ那些对未来临床翻译最佳的治疗指数。

纳米材料可以是放射性标记的用于在活的动物与正电子发射断层扫描(PET)成像,其具有所有的临床成像方式7之间极好的灵敏度和重现性定量表征。例如,89 Zr的标记的长循环纳米医学已经表征在小鼠模型中的癌症8,9,10,以及在其它疾病模型11。此外,该纳米医学的血半衰期和生物分布可广泛用在个人组织8利用体外放射性测量评估。因此,単允许纳米医学在全身和组织水平的定量评价。

重要的是,radiolabeleð纳米医学通常不能在单细胞或亚细胞水平进行分析,由于放射性信号的空间分辨率有限。因此,荧光标记证明是纳米颗粒的光学成像技术,如流式细胞仪和荧光显微镜12中的评价的互补方式。为此,标记放射性同位素和荧光标签纳米粒子可以定量在体内通过核成像评估和体外通过放射性计数,而且它们也可广泛表征在光学成像的细胞水平。

以前,我们已经开发了模块式程序,以放射性和荧光标记纳入各种纳米粒子,包括高密度脂蛋白(HDL)11,脂质体9,10,聚合物纳米颗粒,抗体片段,和nanoemulsions 10,13。这些标记纳米粒子已经允许在不同层次的相关动物模型,引导这些纳米材料的优化其具体应用定量表征。在目前的研究中,目的是利用纳米脂质体,最成熟的纳米平台14 -作为一个例子来证明综合程序生成双标记纳米颗粒,并把它在一个典型的同系黑色素瘤B16-F10小鼠模型15彻底表征。从结果来看,我们有信心这种纳米粒子的表征方法可以适用于评估相关的小鼠模型其它癌症纳米医学。

Protocol

该过程包括纳米颗粒的双放射性和荧光标记, 体内 PET-CT成像, 离体生物分布的测量,和离体免疫染色和流式细胞仪分析。所有的动物实验是由纪念斯隆 – 凯特琳癌症中心的机构动物护理和使用委员会批准。 1.双标记的脂质体的制备注:同基因的B16黑色素瘤也可以从吸入含-isoflurane-2%的氧气注入300000 B16-F10细胞到C57BL / 6小鼠的背部侧面…

Representative Results

图1示出了该过程的概述。 图2表示在步骤1 10中所述的双重标记的脂质体的概略合成方法。 图3显示一个代表的PET-CT图像( 图3a),从PET成像( 图3b),血中半衰期( 图3c),和放射性纳米颗粒的生物分布( 图3d)放射性量化,如在步骤2中所述在图3a中 ?…

Discussion

该议定书中的关键步骤:

双标记的脂质体的高品质的关键是产生在一段长期一致的结果。自由荧光染料或89 Zr离子可以产生完全不同的定位方式,而且必须在纯化步骤中被完全去除。另外,如果免疫系统显著影响实验癌症纳米性能,使用免疫小鼠模型的应该是优选的,如在C57BL / 6小鼠的B16-F10黑素瘤模型中,这是在本协议中使用。如果肿瘤微环境或遗传突变的特定组合是…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Drs. Helene Salmon and Miriam Merad from Icahn School of Medicine at Mount Sinai for providing the B16-F10-YFP cells and for their expert advice on melanoma mouse models. The authors further thank the Animal Imaging Core Facility, the Radiochemistry and Molecular Imaging Probes Core Facility, and the Molecular Cytology Core Facility at Memorial Sloan Kettering Cancer Center (MSK) for their support. This work was supported by National Institutes of Health grants NIH 1 R01 HL125703 (W.J.M.M.), R01CA155432 (W.J.M.M.), K25 EB016673 (T.R.) and P30 CA008748 (MSK Center Grant). The authors also thank the Center for Molecular Imaging and Nanotechnology (CMINT) at MSK for their financial support (T.R.).

Materials

DPPC Avantilipids 850355
Cholesterol Sigma-Aldrich C8667
DSPE-PEG2000 Avantilipids 880120P
DSPE-DFO Home made 110634 Perez-Medina et al, JNM, 2014
DiIC12[5]-DS AAT Bioquest 22051
Centrifugal filter Vivaproducts VS2061
Rotary evaporator Buchi R-100
Radio-HPLC Shimadzu HPLC with 2 LC-10AT pumps N/A
89Zr-oxalate MSKCC Synthesized in house TR19/9 variable beam cyclotron (Ebco Industries Inc)
Micro PET-CT Siemens Inveon Micro-PET/CT
Gamma counter PerkinElmer 2470-0150
Flow cytometry BD Biosciences Fortessa Any multi-parametric flow cytometry analyzers would suffice
C57BL/6 mice Jackson Laboratories
B16-YFP melanoma cells Home made N/A Salmon et al, Immunity, 2016
Ly6C (clone HK1.4)–APC-Cy7 128025 Biolegend
MHCII (M5/114/152)–APC 107613 Biolegend
CD45 (30-F11)–BV510 103137 Biolegend
CD64 (X54-5/7.1)–PE-Cy7 139313 Biolegend
CD11b (M1/70)–BV605 101237 Biolegend
CD3 (17A2)–BV711 100241 Biolegend
CD31 (13.3)–PE 561073 Biolegend
CD11c (M418)–PerCP-Cy5.5 117327 BD Biosciences
CD31 (13.3) no fluorophore 550274 BD Biosciences

References

  1. Peer, D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2, 751-760 (2007).
  2. Barenholz, Y. Doxil(R)–the first FDA-approved nano-drug: lessons learned. J Control Release. 160, 117-134 (2012).
  3. Green, M. R., et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 17, 1263-1268 (2006).
  4. Juliano, R. Nanomedicine: is the wave cresting?. Nat Rev Drug Discov. 12, 171-172 (2013).
  5. Ledford, H. Bankruptcy filing worries developers of nanoparticle cancer drugs. Nature. 533, 304-305 (2016).
  6. Venditto, V. J., Szoka, F. C. Cancer nanomedicines: so many papers and so few drugs!. Adv Drug Deliv Rev. 65, 80-88 (2013).
  7. Dunphy, M. P., Lewis, J. S. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med. (50 Suppl 1), (2009).
  8. Perez-Medina, C., et al. PET Imaging of Tumor-Associated Macrophages with 89Zr-Labeled High-Density Lipoprotein Nanoparticles. J Nucl Med. 56, 1272-1277 (2015).
  9. Perez-Medina, C., et al. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med. 55, 1706-1711 (2014).
  10. Perez-Medina, C., et al. Nanoreporter PET predicts the efficacy of anti-cancer therapy. Nature communications. , (2016).
  11. Tang, J., et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science advances. , (2015).
  12. Priem, B., Tian, C., Tang, J., Zhao, Y., Mulder, W. J. Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin Drug Deliv. 12, 1881-1894 (2015).
  13. Gianella, A., et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 5, 4422-4433 (2011).
  14. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 4, 145-160 (2005).
  15. Salmon, H., et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity. 44, 924-938 (2016).
  16. Perez-Medina, C., et al. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models. JACC Cardiovasc Imaging. 9, 950-961 (2016).
  17. Duivenvoorden, R., et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature communications. 5, 3065 (2014).
  18. Carney, B., et al. Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models. Mol Imaging Biol. , (2015).
  19. Salinas, B., et al. Radioiodinated PARP1 tracers for glioblastoma imaging. EJNMMI Res. 5, 123 (2015).
  20. Carlucci, G., et al. Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma. Mol Imaging Biol. 17, 848-855 (2015).
  21. Tang, J., et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc. Natl. Acad. Sci. USA. , (2016).
  22. Scott, A. M., Wolchok, J. D., Old, L. J. Antibody therapy of cancer. Nat Rev Cancer. 12, 278-287 (2012).
  23. Goodwill, P., et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 24, 3870-3877 (2012).
check_url/kr/55271?article_type=t

Play Video

Cite This Article
Tang, J., Pérez-Medina, C., Zhao, Y., Sadique, A., Mulder, W. J. M., Reiner, T. A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines. J. Vis. Exp. (121), e55271, doi:10.3791/55271 (2017).

View Video