Summary

家兔加速动脉粥样硬化模型的研究--髂动脉球囊损伤的方法学观察

Published: October 03, 2017
doi:

Summary

动物模型的动脉粥样硬化是必不可少的了解机制和研究新的方法, 以防止斑块的发展或破裂, 在工业化世界的主要死因。该方案采用球囊损伤和胆固醇丰富的饮食组合, 诱导兔髂动脉动脉粥样硬化斑块。

Abstract

在动脉粥样硬化斑块发育和破裂后冠状动脉闭塞引起的急性冠状动脉综合征是工业化国家死亡的主要原因。新西兰白 (NZW) 兔被广泛用作动脉粥样硬化研究的动物模型。当动脉粥样硬化饮食时, 它们会产生自发的损伤;然而, 这需要很长的时间 4-8 月。为了进一步加强和加速动脉粥样硬化, 动脉粥样硬化饮食和机械内皮损伤的结合经常被使用。提出了一种诱导家兔动脉粥样硬化斑块的方法, 用气囊导管阻断动脉粥样硬化饮食喂养的 NZW 兔左髂动脉内皮细胞。这种由气囊导管引起的机械损伤诱发了一连串的炎症反应, 引发了膜的脂质堆积。球囊损伤后动脉粥样硬化斑块显示膜增厚, 脂质浸润广泛, 平滑肌细胞含量高, 巨噬细胞衍生泡沫细胞存在。该技术简单, 重现性好, 在髂动脉内产生受控长度的斑块。整个程序在 20-30 分钟内完成。该手术是安全的低死亡率, 也提供了很大的成功获得大量内膜病变。气囊导管诱发动脉损伤的方法在两周内导致动脉粥样硬化。该模型可用于疾病病理学、诊断影像学的研究和新的治疗策略的评价。

Introduction

易损性动脉粥样硬化斑块破裂是工业化国家的主要死因之一1。尽管过去几十年的研究已经展现了一些分子和细胞机制参与了斑块的进展, 但仍然需要继续努力, 不仅要解开疾病进展的复杂机制, 还要测试新的治疗方法.已经提出了几种动物模型来研究动脉粥样硬化。基因操作、胆固醇喂养或机械内皮损伤是多数动物模型的共同的标准策略包括小鼠、兔子或者小型。在这些, NZW 兔子是敏感的胆固醇饮食, 而正常的大鼠和小鼠不显着吸收膳食胆固醇2,3,4。家兔自发地发展出富含巨噬细胞的主动脉病变, 当喂食富含胆固醇的饮食时5,6。然而, 4-8 月的长期准备时间诱导动脉粥样硬化 plaquesby 喂养胆固醇饮食单独6,7是大多数实验设置的主要缺点。为了在较短的时间内诱导病变, Baumgarter 和施图德博土8开发了高胆固醇饮食和球囊损伤的结合。这项技术的总目标是诱导2周内高家兔的动脉粥样硬化斑块 (类似于人的脂肪条纹)。本技术介绍了基于 Baumgarter 方法的动脉壁损伤过程, 采用气囊导管进入 NZW 高兔髂动脉。

加上胆固醇丰富的饮食, 由气球引起的损伤导致损伤将导致动脉粥样硬化。球囊损伤加速动脉粥样硬化病变的形成, 并产生均匀大小和分布的斑块。内膜增厚超过一段时间, 内中膜细胞浸润在损伤后数日内开始增加。脂肪条纹与大量巨噬细胞开始出现后 7-10 天的气球损伤, 并表示为 II 型病变根据分类的美国心脏协会。兔的球囊损伤常在主动脉中进行, 以研究斑块的组成。膜内皮表达高水平的细胞间黏附分子。斑块与内侧解剖和外的变化有关。动脉粥样硬化病变由脂质、增殖性平滑肌细胞 (校董)、胶原纤维和在再生内皮下积聚的炎症细胞组成, 主要为 II. 型。兔斑块的拓扑分布类似于人类脉的报告9,10原则上, 与髂动脉相比, 大动脉的大小更大, 并且会产生更大长度的斑块。然而, 利用髂动脉作为动脉粥样硬化部位的主要优势是其可获得性, 其肌肉含量与人冠状动脉的相似性11, 均匀病变的发展为12, 高组织因子活动13和一致的血管尺寸, 可与人冠状动脉相媲美, 允许对商业制造的设备进行评估, 以进行形态学和血管造影终点。对活体动物的兔髂动脉斑块进行了侵入性和无创的分析研究。以前的报告描述了使用磁共振成像 (MRI) 的帮助下, 2.35-特斯拉先生系统14此外, 血管内超声 (IVUS) 或光学相干断层扫描 (OCT) 导管可适当应用于图像兔髂动脉动脉粥样硬化斑块。髂动脉可用于超声成像时, 使用高分辨率声像和主动脉也可以探索与该技术。

在过去的十年中, 这种兔气球损伤模型有助于进一步了解斑块进展的机制15和斑块回归16。此外, 该模型已被用来研究新的治疗剂, 如他汀类药物, 标准抗血小板药物, 抗氧化剂17,18和药物洗脱支架, 如司或zotarolimus 洗脱支架19,20膜增厚。该模型还用于研究近红外荧光成像导管的血管内成像21

Protocol

该试验方案已获州兽医局、弗里堡和瑞士联邦兽医局批准 (FR 2015/58). 注意: 使用2.8 到3.2 公斤之间的雄性 NZW 兔子。动物被安置在常规情况下 (12 h 光和黑暗的周期, 提供广告随意水和食物)。在气球剥脱之前, 动物被驯化了1周, 在这期间, 他们被喂食正常饮食。经过1周的驯化, 家兔被转换为动脉粥样硬化饮食由高脂肪 (8.6%), 和饱和脂肪酸与205毫克/千克胆固醇 (1%) 饮食的整个研究…

Representative Results

髂动脉球囊损伤无并发症 (图 1) 成功完成。总手术时间范围从20至30分钟的伤害只在一个髂动脉, 35 至45分钟的伤害, 在两个动脉。兔在球囊损伤后1小时内恢复。所有的动物都健康, 没有明显的体重减轻。无感染、水肿或动脉血栓形成。缝合部位除轻度纤维化外, 伤口面积正常。在4周的动脉粥样硬化饮食喂养后, 家兔高胆固醇血症的44±18毫米/升。 <p c…

Discussion

兔髂动脉粥样硬化模型广泛应用于动脉粥样硬化的研究。与这个协议兔子迅速地开发了更加严厉和先进的匾与自发损伤开发与仅胆固醇膳食。重要的是, 动物从手术中迅速恢复。

动脉粥样硬化的主要刺激是由气囊导管造成的机械损伤, 它会伤害内皮细胞, 扩张血管壁26。这一过程诱发重塑反应的特点是炎症与巨噬细胞的招募和脂质积累时, 与 hypercholestorolemic 饮…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了瑞士国家科学基金会赠款150271的支持。

Materials

New Zealand White rabbits Charles River laboratories,France Cre:KBL(NZW)
Cholesterol rich diet Ssniff spezialdiäten Ssniff EF K High Fat and Cholesterol
Glass bead sterilizer-Germinator 500 VWR, Leicestershire, UK 101326-488
Fogarty balloon embolectomy catheters, 2 French Edwards Lifesciences, Switzerland 120602F For single use only
Luer Lock Syringe Becton, Dickinson and Company, USA 309628
Thermopad Type 226 Solis, Switzerland AG 397387
Buprenorphine- Temgesic Reckitt Benckiser AG, Switzerland 7.68042E+12
Isoflurane Piramal Critical Care, Inc, Bethlehem, PA 18017 2667-46-7
Anaesthesia machine-combi-vet Base Anesthesia System Rothacher Medical GmbH, Switzerland CV 30-301-A
Cardell touch veterinary vital signs monitor Midmark, Ohio, USA 8013-001
Ophthalmic ointment-Humigel Virbac, France
Animal hair clippers Aesculap AG, Germany GT420
Disinfectant-Betadine solution MundipharmaMedicalCompany, Switzerland 14671-1203
Dumont #7 Forceps FST Germany 11274-20
Medium and small microscissors Medline International Switzerland Sàrl UC4337
Microvascular clamps FST, Germany 18051-28
Papaverine ESCA chemicals, Switzerland RE 356 803
Vein Pick Harvard Apparatus, Cambridge, UK 72-4169 For single use only
Saline Laboratorium Dr. G. Bichsel AG, , Switzerland 1330055
Polysorb 5-0 suture Covidien AG, Switzerland UL 202 Monofilament
Sulfadoxine and Trimethoprim-Trimethazol Werner Stricker AG, Switzerland Swissmedic Nr. 50'361
Antiseptic- Octenisept Schülke & Mayr AG, Switzerland GTIN: 4032651214068
Phosphate Buffered Saline Roth 1058.1
Isobutanol-2-Methylbutane Sigma-Aldrich, Switzerland M32631-1L
Optimum Cutting Temperature compound-Tissue-Tek VWR Chemicals, Belgium 25608-930
Cryostat Leica, Glattbrugg, Switzerland Leica CM1860 UV
Glass slide- Superfrost Plus Thermo Scientific 4951PLUS4
Mayer's Haematoxylin Sigma-Aldrich, Switzerland MHS32-1L
Eosin 0.5% aq. Sigma-Aldrich, Switzerland HT110232-1L
Oil Red O Sigma-Aldrich, Switzerland O0625-25G
α-smooth muscle actin antibody Abcam, UK. ab7817
Macrophage Clone RAM11 antibody DAKO, Switzerland M063301
Hoechst Abcam, UK. ab145596
Goat polyclonal Secondary Antibody (Chromeo 546) Abcam, UK. ab60316
Alexa Fluor 488/547 Abcam, UK.
Glycergel Mounting Medium, Aqueous DAKO, Switzerland C056330
Hematoxylin for Movat pentachrome staining Sigma-Aldrich, Switzerland H3136-25G
Ferric chloride for Movat pentachrome staining Sigma-Aldrich, Switzerland 157740-100G
Iodine for Movat staining Sigma-Aldrich, Switzerland 207772-100G
Potassium iodide for Movat pentachrome staining Sigma-Aldrich, Switzerland 60400-100G-F
Alcian blue for Movat staining Sigma-Aldrich, Switzerland A5268-10G
Strong Ammonia for Movat pentachrome staining Sigma-Aldrich, Switzerland 320145-500ML
Brilliant crocein MOO for Movat pentachrome staining Sigma-Aldrich, Switzerland 210757-50G
Acid Fuchsin for Movat pentachrome staining Sigma-Aldrich, Switzerland F8129-50G
Sodium Thiosulfate for Movat pentachrome staining Sigma-Aldrich, Switzerland 72049-250G,
Phosphotungstic acid for Movat pentachrome staining Sigma-Aldrich, Switzerland 79690-100G
Crocin for Movat pentachrome staining Sigma-Aldrich, Switzerland 17304-5G
EUKITT for Movat pentachrome staining Sigma-Aldrich, Switzerland 03989-100ML

References

  1. Mozaffarian, D., et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 131, e29-e322 (2015).
  2. Boone, L. R., Brooks, P. A., Niesen, M. I., Ness, G. C. Mechanism of resistance to dietary cholesterol. J Lipids. 2011, 101242 (2011).
  3. Kapourchali, F. R., et al. Animal models of atherosclerosis. World J Clin Cases. 2, 126-132 (2014).
  4. Carter, C. P., Howles, P. N., Hui, D. Y. Genetic variation in cholesterol absorption efficiency among inbred strains of mice. J Nutr. 127, 1344-1348 (1997).
  5. Kolodgie, F. D., et al. Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Arterioscler Thromb Vasc Biol. 16, 1454-1464 (1996).
  6. Singh, V., Tiwari, R. L., Dikshit, M., Barthwal, M. K. Models to study atherosclerosis: a mechanistic insight. Curr Vasc Pharmacol. 7, 75-109 (2009).
  7. Dornas, W. C., Oliveira, T. T., Augusto, L. E., Nagem, T. J. Experimental atherosclerosis in rabbits. Arq Bras Cardiol. 95, 272-278 (2010).
  8. Baumgartner, H. R., Studer, A. [Effects of vascular catheterization in normo- and hypercholesteremic rabbits]. Pathol Microbiol (Basel). 29, 393-405 (1966).
  9. Tanaka, H., et al. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation. 88, 1788-1803 (1993).
  10. Phinikaridou, A., Hallock, K. J., Qiao, Y., Hamilton, J. A. A robust rabbit model of human atherosclerosis and atherothrombosis. J Lipid Res. 50, 787-797 (2009).
  11. Nakazawa, G., et al. Drug-eluting stent safety: findings from preclinical studies. Expert Rev Cardiovasc Ther. 6, 1379-1391 (2008).
  12. Aikawa, M., et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 97, 2433-2444 (1998).
  13. Jeanpierre, E., et al. Dietary lipid lowering modifies plaque phenotype in rabbit atheroma after angioplasty: a potential role of tissue factor. Circulation. 108, 1740-1745 (2003).
  14. Durand, E., et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res. 44, 119-128 (2007).
  15. Stadius, M. L., et al. Time course and cellular characteristics of the iliac artery response to acute balloon injury. An angiographic, morphometric, and immunocytochemical analysis in the cholesterol-fed New Zealand white rabbit. Arterioscler Thromb. 12, 1267-1273 (1992).
  16. Khanna, V., et al. Cholesterol diet withdrawal leads to an initial plaque instability and subsequent regression of accelerated iliac artery atherosclerosis in rabbits. PLoS One. 8, e77037 (2013).
  17. Zou, J., et al. Effect of resveratrol on intimal hyperplasia after endothelial denudation in an experimental rabbit model. Life Sci. 68, 153-163 (2000).
  18. Li, M., Zhang, Y., Ren, H., Zhang, Y., Zhu, X. Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis. 194, 348-356 (2007).
  19. Nakazawa, G., et al. Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circ Cardiovasc Interv. 4, 38-46 (2011).
  20. Van Dyck, C. J., et al. Resolute and Xience V polymer-based drug-eluting stents compared in an atherosclerotic rabbit double injury model. Catheter Cardiovasc Interv. 81, E259-E268 (2013).
  21. Abran, M., et al. Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits. Biomed Opt Express. 6, 3989-3999 (2015).
  22. Kanamasa, K., et al. Recombinant tissue plasminogen activator prevents intimal hyperplasia after balloon angioplasty in hypercholesterolemic rabbits. Jpn Circ J. 60, 889-894 (1996).
  23. Pai, M., et al. Inhibition of in-stent restenosis in rabbit iliac arteries with photodynamic therapy. Eur J Vasc Endovasc Surg. 30, 573-581 (2005).
  24. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Cryosectioning tissues. CSH Protoc. 2008, (2008).
  25. Chaytor, A. T., Bakker, L. M., Edwards, D. H., Griffith, T. M. Connexin-mimetic peptides dissociate electrotonic EDHF-type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery. Br J Pharmacol. 144, 108-114 (2005).
  26. Zhang, W., Trebak, M. Vascular balloon injury and intraluminal administration in rat carotid artery. J Vis Exp. (94), (2014).
  27. Maillard, L., et al. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther. 7, 1353-1361 (2000).
  28. Sharif, F., et al. Gene-eluting stents: adenovirus-mediated delivery of eNOS to the blood vessel wall accelerates re-endothelialization and inhibits restenosis. Mol Ther. 16, 1674-1680 (2008).
  29. Lee, J. M., et al. Development of a rabbit model for a preclinical comparison of coronary stent types in-vivo. Korean Circ J. 43, 713-722 (2013).
  30. Tulis, D. A. Rat carotid artery balloon injury model. Methods Mol Med. 139, 1-30 (2007).
  31. Asada, Y., et al. Effects of inflation pressure of balloon catheter on vascular injuries and subsequent development of intimal hyperplasia in rabbit aorta. Atherosclerosis. 121, 45-53 (1996).
  32. Dornas, W. C., Oliveira, T. T., Augusto, L. E., Nagem, T. J. Experimental atherosclerosis in rabbits. Arq Bras Cardiol. 95, 272-278 (2010).
  33. Waksman, R., et al. PhotoPoint photodynamic therapy promotes stabilization of atherosclerotic plaques and inhibits plaque progression. J Am Coll Cardiol. 52, 1024-1032 (2008).
  34. Fernandez-Parra, R., et al. Pharmacokinetic Study of Paclitaxel Concentration after Drug-Eluting Balloon Angioplasty in the Iliac Artery of Healthy and Atherosclerotic Rabbit Models. J Vasc Interv Radiol. 26, 1380-1387 (2015).
  35. Dussault, S., Dhahri, W., Desjarlais, M., Mathieu, R., Rivard, A. Elsibucol inhibits atherosclerosis following arterial injury: multifunctional effects on cholesterol levels, oxidative stress and inflammation. Atherosclerosis. 237, 194-199 (2014).
  36. Manderson, J. A., Mosse, P. R., Safstrom, J. A., Young, S. B., Campbell, G. R. Balloon catheter injury to rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis. 9, 289-298 (1989).
  37. Miyake, T., et al. Prevention of neointimal formation after angioplasty using nuclear factor-kappaB decoy oligodeoxynucleotide-coated balloon catheter in rabbit model. Circ Cardiovasc Interv. 7, 787-796 (2014).
  38. Fulcher, J., Patel, S., Nicholls, S. J., Bao, S., Celermajer, D. Optical coherence tomography for serial in vivo imaging of aortic plaque in the rabbit: a preliminary experience. Open Heart. 2, e000314 (2015).
  39. Abela, O. G., et al. Plaque Rupture and Thrombosis: the Value of the Atherosclerotic Rabbit Model in Defining the Mechanism. Curr Atheroscler Rep. 18, 29 (2016).
  40. Yamashita, A., Asada, Y. A rabbit model of thrombosis on atherosclerotic lesions. J Biomed Biotechnol. 2011, 424929 (2011).
check_url/kr/55295?article_type=t

Play Video

Cite This Article
Jain, M., Frobert, A., Valentin, J., Cook, S., Giraud, M. The Rabbit Model of Accelerated Atherosclerosis: A Methodological Perspective of the Iliac Artery Balloon Injury. J. Vis. Exp. (128), e55295, doi:10.3791/55295 (2017).

View Video