Summary

多光子时间推移成像实时可视化发展: 迁移神经嵴细胞在斑马鱼胚胎中的可视化

Published: August 09, 2017
doi:

Summary

激光扫描与波长多光子荧光显微镜的先进光学技术组合的实施是为了捕获高分辨率的、 三维的、 实时成像中甘油三酯 (sox10:EGFP) 和甘油三酯 (foxd3:GFP) 斑马鱼胚胎神经嵴迁移。

Abstract

先天性眼和颅颌面畸形反映神经嵴,流动人口的洄游的干细胞,导致整个身体的许多细胞类型的中断。了解神经嵴的生物学已经有限,反映出缺乏可以研究体内的转基因听话模型和实时。斑马鱼是特别重要的发展模式,为研究洄游的细胞群,如神经嵴。若要检查神经嵴迁移到眼睛发育,实施的结合激光扫描显微镜与长波长多光子荧光激发的先进光学技术是拍摄高分辨率的、 三维的、 实时的转基因斑马鱼胚胎,即甘油三酯 (sox10:EGFP) 和甘油三酯 (foxd3:GFP),在眼睛发育如sox10foxd3已经在众多的动物模型,以调节早期神经嵴分化,他们可能代表神经嵴细胞的标记所示。多光子延时成像用来辨别的行为和早期眼发展作出贡献的两个神经嵴细胞群的迁徙模式。本议定书提供关于作为一个例子,斑马鱼神经嵴在迁移期间,生成的视频信息,并可进一步用于可视化斑马鱼和其他模式生物的很多建筑的早期发展。

Introduction

先天性眼疾导致儿童失明,往往是由于异常的颅神经嵴。神经嵴细胞是瞬态的干细胞,起身从神经管形成许多机体全身。1,2,3,4,5前脑的两侧和中脑,神经嵴细胞,引起的骨和软骨的中部和额叶区和虹膜、 角膜、 小梁网和前段眼睛的巩膜。4,6,7,8神经嵴细胞从蛤蚧形式咽弓、 下巴和心脏流出道。1,3,4,9,10研究强调了贡献于眼部神经嵴和眼周发展,强调这些细胞在脊椎动物眼睛发育的重要性。事实上,中断的神经嵴细胞迁移和分化导致颅面部、 眼部异常如在阿克森费尔德丽格综合征和彼得斯加综合征。11,12,13,14,15,16,17因此,全面了解迁移、 增殖和分化的这些神经嵴细胞将提供洞察潜在先天性眼疾的复杂性。

斑马鱼是强大的模式生物研究眼发展,斑马鱼眼的结构类似于哺乳动物同行,以及许多基因进化保守斑马鱼和哺乳动物之间。18,19,20此外,斑马鱼胚胎是透明和卵生,促进眼发育的实时可视化。

扩大以前发表的作品,6720神经嵴细胞的迁移模式描述了使用多光子荧光延时成像上带有 SRY (性别决定区 Y) 的转录控制下的绿色荧光蛋白 (GFP) 的转基因斑马鱼线-框 10 (sox10) 或叉头框 D3 (foxd3) 基因调控区域。21,22,23,24.多光子荧光延时成像是一项强大的技术,结合先进的光学技术的激光扫描显微镜与长波长多光子荧光激发来捕获的标本,用荧光标记的高分辨率的三维图像。25,26,27多光子激光的使用已经超过标准的共焦显微镜,包括增加的组织的渗透和减少的荧光漂白明显的优势。

使用此方法,两个不同种群的神经嵴细胞迁移和洄游通道的时间变了可区分,即 foxd3 阳性神经嵴细胞在眼周间质和眼睛发育和颅面间质 sox10 阳性神经嵴细胞。使用此方法,介绍了可视化的斑马鱼的眼部和面部神经嵴迁移迁移方法,使其易于观察发展过程中实时调节的神经嵴迁移。

此协议提供信息以便在早期眼发育的甘油三酯 (sox10:EGFP) 和甘油三酯 (foxd3:GFP) 转基因斑马鱼作为示例生成定时视频。此协议可进一步用于任何来自神经嵴细胞在斑马鱼的眼部和面部结构的早期发展的高分辨率的、 三维的、 实时可视化。此外,这种方法进一步可以用于发展的其它组织和器官在斑马鱼和其他动物的模型可视化。

Protocol

The protocol described here was performed in accordance with the guidelines for the humane treatment of laboratory animals established by the University of Michigan Committee on the Use and Care of Animals (UCUCA). 1. Embryo Collection for Time-lapse Imaging Between 3 and 9 pm, set up male and female adult Tg(sox10:EGFP) or Tg(foxd3:GFP) transgenic zebrafish in a divided breeding tank for pairwise mating. NOTE: The Tg(sox10:EGFP) and Tg(foxd3:G…

Representative Results

多光子荧光延时成像产生一系列的视频显示斑马鱼线到眼前段中的甘油三酯 (sox10:EGFP) 和甘油三酯 (foxd3:GFP) 与颅面结构引起的颅神经嵴细胞的迁移模式。作为一个例子, sox10-12 和 30 hpf 之间的积极的神经嵴细胞迁移从神经管的边缘到颅面地区 (视频 1, 图 2)。来自前脑的两侧和中脑细胞迁移的背、 腹面的…

Discussion

多光子延时成像使体内追踪的瞬态和洄游的细胞群体。这个强大的技术可用于研究胚胎过程在真正的时间,并在本研究中,这种方法的结果加强的神经嵴细胞迁移和发展的当前知识。以前的延时成像研究通常利用共聚焦激光扫描显微镜。29,30,31,32在这里,我们目前使用的多光子技术,相比传统?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢托马斯 · 席林请送礼的甘油三酯 (sox10:eGFP) 鱼和玛丽哈洛伦的慈祥礼物甘油三酯(foxd3:GFP)鱼。

Materials

Breeding Tanks with Dividers Aquaneering ZHCT100 Crossing Tank Set (1.0-liter) Clear Polycarbonate with Lid and Insert
M205 FA Combi-Scope Leica Microsystems CMS GmbH Stereofluorescence Microscope – FusionOptics and TripleBeam
Sodium Chloride Millipore (EMD) 7760-5KG Double PE sack. CAS No. 7647-14-5, EC Number 231-598-3
Potassium Chloride Millipore (EMD) 1049380500 Potassium chloride 99.999 Suprapur. CAS No. 7447-40-7, EC Number 231-211-8.
Calcium Chloride Dihydrate Fisher Scientific C79-500 Poly bottle; 500 g. CAS No. 10035-04-8
Magnesium Sulfate (Anhydrous) Millipore (EMD) MX0075-1 Poly bottle; 500 g. CAS No. 7487-88-9, EC Number 231-298-2
Methylene Blue Millipore (EMD) 284-12 Glass bottle; 25 g. Powder, Certified Biological Stain
Sodium Bicarbonate Millipore (EMD) SX0320-1 Poly bottle; 500 g. Powder, GR ACS. CAS No. 144-55-8, EC Number 205-633-8
N-Phenylthiourea Sigma P7629-25G >98%. CAS Number 103-85-5, EC Number 203-151-2
Dimethylsulfoxide Sigma D8418-500ML Molecular Biology grade. CAS Number 67-68-5, EC Number 200-664-3
Tricaine Methanesulfonate Western Chemical Inc. MS222 Tricaine-S
Low-Melt Agarose ISC Bioexpress E-3112-25 GeneMate Sieve GQA Low Melt Agarose, 25 g
Open Bath Chamber Warner Instruments RC-40HP High Profile
Glass Coverslips Fisher Scientific 12-545-102 Circle cover glass. 25 mm diameter
High Vacuum Grease Fisher Scientific 14-635-5C 2.0-lb. tube. DOW CORNING CORPORATION
1658832
Quick Exchange Platform Warner Instruments QE-1 35 mm
Stage Adapter Warner Instruments SA-20LZ-AL 16.5 x 10 cm
TC SP5 MP multi-photon microscope Leica Microsystems CMS GmbH
Mai Tai DeepSee Ti-Sapphire Laser SpectraPhysics
Laser Safety Box Leica Microsystems CMS GmbH
Leica Application Suite X (LAS X)  Software Leica Microsystems CMS GmbH
Photoshop CS 6 Version 13.0 x64 Software Adobe
iMovie Version 10.1.4 Software Apple

References

  1. Barembaum, M., Bronner-Fraser, M. Early steps in neural crest specification. Sem Cell Dev Biol. 16, 642-646 (2005).
  2. Gage, P. J., Rhoades, W., Prucka, S. K., Hjalt, T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 46 (11), 4200-4208 (2005).
  3. Minoux, M., Rijli, F. M. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 137, 2605-2621 (2010).
  4. Trainor, P. A. Specification of neural crest cell formation and migration in mouse embryos. Sem Cell Dev Biol. 16, 683-693 (2005).
  5. Johnston, M. C., Noden, D. M., Hazelton, R. D., Coulombre, J. L., Coulombre, A. Origins of avian ocular and periocular tissues. Exp Eye Res. 29, 27-43 (1979).
  6. Bohnsack, B. L., Kahana, A. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol. 373, 300-309 (2013).
  7. Chawla, B., Schley, E., Williams, A. L., Bohnsack, B. L. Retinoic acid and pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol. , (2016).
  8. Trainor, P. A., Tam, P. P. L. Cranial paraxial mesoderm and neural crest cells of the mouse embryo-codistribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development. 121 (8), 2569-2582 (1995).
  9. Hong, C. S., Saint-Jeannet, J. P. Sox proteins and neural crest development. Sem Cell Dev Biol. 16, 694-703 (2005).
  10. Steventon, B., Carona-Fontaine, C., Mayor, R. Genetic network during neural crest induction: from cell specification to cell survival. Sem Cell Dev Biol. 16, 647-654 (2005).
  11. Dressler, S., et al. Dental and craniofacial anomalies associated wth Axenfeld-Rieger syndrome with PITX2 mutation. Case Report Med. , 621984 (2010).
  12. Ozeki, H., Shirai, S., Ikeda, K., Ogura, Y. Anomalies associated with Axenfeld-Rieger syndrome. Graefes Arch Clin Exp Ophthalmol. 237 (9), 730-734 (1999).
  13. Strungaru, M. H., Dinu, I., Walter, M. A. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 48, 228-237 (2007).
  14. Tumer, Z., Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of Pitx2 and Foxc1 mutations. Eur J Hum Genet. 17, 1527-1539 (2009).
  15. Schoner, K., et al. Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters plus syndrome and B3GALTL mutations. Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn. 33 (1), 75-80 (2013).
  16. Aliferis, K., et al. A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly. Ophthalmic Genet. 31 (4), 205-208 (2010).
  17. Lesnik Oberstein, ., S, A., et al. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 79 (3), 562-566 (2006).
  18. Brittijn, S. A., et al. Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol. 53, 835-850 (2009).
  19. Bohnsack, B. L., Kasprick, D., Kish, P. E., Goldman, D., Kahana, A. A zebrafish model of Axenfeld-Rieger Syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci. 53 (1), 7-22 (2012).
  20. Williams, A. L., Eason, J., Chawla, B., Bohnsack, B. L. Cyp1b1 regulates ocular fissure closure through a retinoic acid-independent pathway. Invest Ophthalmol Vis Sci. 58 (2), 1084-1097 (2017).
  21. Curran, K., Raible, D. W., Lister, J. A. Foxd3 controls melanophore specification in the zebrafish neual crest by regulation of Mitf. Dev Biol. 332 (2), 408-417 (2009).
  22. Dutton, K., Dutton, J. R., Pauliny, A., Kelsh, R. N. A morpholino phenocopy of the colourless mutant. Genesis. 30 (3), 188-189 (2001).
  23. Dutton, K. A., et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development. 128 (21), 4113-4125 (2001).
  24. Kucenas, S., Takada, N., Park, H. C., Woodruff, E., Broadie, K., Appel, B. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci. 11, 143-151 (2008).
  25. Denk, W., Strickler, J., Webb, W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  26. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2 (12), 932-940 (2005).
  27. Denk, W., Delaney, K. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods. 54 (2), 151-162 (1994).
  28. Bohnsack, B. L., Gallina, D., Kahana, A. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle developmnt to changes in retinoic acid and insulin-like growth factor signaling. PLoS ONE. 6, e22991 (2011).
  29. Gfrerer, L., Dougherty, M., Laio, E. C. Visualization of craniofacial development in the sox10:kaede transgenic zebrafish line using time-lapse confocal microscopy. J Vis Exp. (79), e50525 (2013).
  30. Lopez, A. L. R., Garcai, M. D., Dickinson, M. E., Larina, I. V. Live confocal microscopy of the developing mouse embryonic yolk sac vasculature. Methods Mol Biol. 1214, 163-172 (2015).
  31. McGurk, P. D., Lovely, C. B., Eberhart, J. K. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. J Vis Exp. (83), e51190 (2014).
  32. Nowotschin, S., Ferrer-Vaquer, A., Hadjantonakis, A. K. Imaging mouse development with confocal time-lapse microscopy. Methods Enzymol. 476, 351-377 (2010).
check_url/kr/56214?article_type=t

Play Video

Cite This Article
Williams, A. L., Bohnsack, B. L. Multi-Photon Time Lapse Imaging to Visualize Development in Real-time: Visualization of Migrating Neural Crest Cells in Zebrafish Embryos. J. Vis. Exp. (126), e56214, doi:10.3791/56214 (2017).

View Video