Summary

Quantitative Measurement of γ-Secretase-mediated Amyloid Precursor Protein and Notch Cleavage in Cell-based Luciferase Reporter Assay Platforms

Published: January 25, 2018
doi:

Summary

We have successfully generated two substrate-specific γ-secretase assays. Both cell-based assays presented here are designed to quantify γ-secretase enzymatic activities via the output of firefly luciferase reporters.

Abstract

We have developed a pair of cell-based reporter gene assays to quantitatively measure γ-secretase cleavage of distinct substrates. This manuscript describes procedures that may be used to monitor γ-secretase-mediated cleavage of either APP-C99 or Notch, using a Gal4 promoter-driven firefly luciferase reporter system. These assays were established by stably co-transfecting HEK293 cells with the Gal4-driven luciferase reporter gene and either the Gal4/VP16-tagged C-terminal fragment of APP (APP-C99; CG cells), or the Gal4/VP16-tagged Notch-ΔE (NΔE; NG cells). Using these reporter assays in parallel, we have demonstrated that an ErbB2 inhibitor, CL-387,785, can preferentially suppress γ-secretase cleavage of APP-C99 in CG cells, but not NΔE in NG cells. The differential responses exhibited by the CG and NG cells, when treated with CL-387,785, represent a preferred characteristic for γ-secretase modulators, and these responses are in stark contrast to the pan-inhibition of γ-secretase induced by DAPT. Our studies provide direct evidence that γ-secretase activities toward different substrates can be differentiated in a cellular context. These new assays may therefore be useful tools in drug discovery for improved AD therapies.

Introduction

Oligomeric forms of amyloid-β (Aβ) are believed to be the primary cause of neurodegeneration in the brains of patients suffering from Alzheimer's disease (AD)1. Aβ peptides are produced by the stepwise cleavage of amyloid precursor protein (APP), first by β-secretase and then by γ-secretase2. In the past decade, therapeutic approaches toward treatment of AD have focused on the prevention of Aβ production3. The majority of studies have focused on either the augmentation of α-secretase activity, which can preclude γ-secretase cleavage of APP and thereby decrease the production of Aβ, or the inhibition of β-and/or γ-secretase activities4. Unfortunately, non-selective inhibition of β- or γ-secretases results in unavoidable side effects that are due to interference with the functioning of other physiological substrates of β- and γ-secretase5,6. With regard to γ-secretase inhibitors, recent studies have reported the discovery of a number of chemical and genetic modulators that can regulate Aβ production while exerting negligible effects on the essential γ-secretase-mediated processing of Notch7,8,9,10,11,12, however, successful therapeutics have not yet been developed. Thus, further systematic screens are warranted to discover novel genetic and chemical modifiers that may selectively modulate γ-secretase-mediated APP processing.

γ-Secretase is known to cleave more than 90 different membrane-anchored proteins. Among these substrates is Notch, whose activity is critical for cell fate determination and differentiation during development13. Selectively modulating γ-secretase-catalyzed APP processing in the absence of affecting Notch processing will be essential for minimizing Notch-related side effects of γ-secretase inhibitors, and this selectivity is thought to be a primary factor that will dictate the biological efficacy of potential γ-secretase modulators for the chronic treatment of AD. There have been a number of arylsulfonamide derivatives, such as GSI-953 (begacestat) and BMS-708163 (avagacestat), that have been found to exhibit potent and selective inhibition of γ-secretase14,15. A previous study has demonstrated that the differential inhibition of γ-secretase cleavage of APP and Notch can be observed using a quantitative ELISA-based assay in combination with in vivo validation using zebrafish16. Furthermore, cell-based assay paradigms have been established to address the potential substrate selectivity of γ-secretase toward APP and Notch17,18. Using protocols similar to those described herein, we have recently discovered a novel class of (D)-leucinamides that potently modulate γ-secretase cleavage of APP with Notch-sparing selectivity19. Together, this collection of studies provides a proof-of-concept supporting the notion that the substrate selectivity/availability of γ-secretase can be subject to chemical modulation and experimental verification. However, these assay platforms often rely on relatively low-throughput readouts and labor-intensive approaches that might not meet industrial standards for drug discovery programs.

We have recently generated cell-based luciferase reporter gene assays that can quantitatively determine the catalytic activity of γ-secretase toward two distinct substrates, the 99-amino acid C-terminal fragment of APP (APP-C99) and the extracellular domain-deleted Notch peptide (NΔE). Both APP-C99 and NΔE have been widely used as direct substrates of γ-secretase in various assays. To generate homogeneous and consistent luciferase reporter gene assays for the γ-secretase cleavage of either APP-C99 or NΔE, we generated one HEK-derived stable cell line (CG) that constitutively expresses a Gal4 promoter-driven firefly luciferase reporter (Gal4-Luc) and Gal4/VP16-tagged APP-C99 fusion protein (C99-GV). In addition, we generated another HEK-derived stable cell line (NG) that constitutively expresses Gal4-Luc and Gal4/VP16-tagged NΔE (NΔE-GV). Using these novel substrate-specific γ-secretase assays, we now provide a method to quantify and distinguish the catalytic activity of γ-secretase toward distinct substrates (APP-C99 in CG cells, or NΔE in NG cells). Moreover, the substrate-specific γ-secretase assays were designed to be conducive to high-content screening platforms. These newly generated γ-secretase assays could pave the way for the discovery of novel γ-secretase modulators that could improve cognitive function by suppressing Aβ production without eliciting undesirable Notch inhibition for the next-generation treatment of AD.

Protocol

1. Measurement of Luciferase Reporter Signals, which Correspond to γ-Secretase Cleavage of APP-C99 or NΔE NOTE: Please refer to the previous publications for detailed descriptions of the generation of CG and NG cells20,21. Seed NG or CG cells (20, 000 cells/well) onto 96-well microplates at a final volume of 200 μL/well in growth medium that is composed of Dulbecco's Modified Eagle Medium (DMEM) p…

Representative Results

Inhibition of ErbB2 by CL-387,785 can differentially promote the processing of APP-C99 by γ-secretase without affecting Notch cleavage To establish a cell-based assay that can quantitatively measure the proteolytic cleavage of a particular γ-secretase substrate, we generated the HEK293-derived CG cell line by stable co-transfection of a tetracycline-inducible C-terminally Gal4/VP16-tagged APP-C99 and a Gal4 promoter-driven…

Discussion

The promising outcomes from a phase 1b trial of aducanumab immunotherapy for AD have firmly established the critical role of Aβ in the pathogenesis of AD22 and suggest that anti-Aβ approaches are still a viable strategy for the development of anti-AD drugs. Here, we describe cell-based assays for quantifying γ-secretase-catalyzed proteolysis of APP-C99 and NΔE using firefly luciferase reporter systems. APP-C99 and NΔE are the two most well-studied γ-secretase substrat…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank the Core Facility of the Institute of Cellular and Organismic Biology, Academia Sinica, for technical support. This study was supported by the Ministry of Science and Technology, Taiwan (MOST 103-2320-B-001-016-MY3 to Y.-F. L.), the Program for Translational Innovation of Biopharmaceutical Development – Technology Supporting Platform Axis Scheme (NP7 to Y.-F.L.), and Academia Sinica (to Y.-F.L.).

Materials

VictorLight luminescence plate reader PerkinElmer 2030-0010
Class II, Type 2 Biological Safety Cabinet Thermo Scientific 1300 Series A2
CL-387,785 EMD Calbiochem 233100-1MG
DAPT Merck 565770
Dulbecco’s Modified Eagle Medium (DMEM) Thermo Fisher 12100046 main compnent of growth medium
Fetal bovine serum (FBS) Thermo Fisher 16000044
Blasticidin Thermo Fisher A1113903
Zeocin Thermo Fisher R25005
Hygromycin B Gibco 10687010
Hemocytomer Sigma-Aldrich BR717805 Aldrich
96-well microplate Nunc 156545
Tetracycline Sigma T7660
Dimethyl sulfoxide (DMSO) Sigma D2650
Steady-Glo luciferase assay reagent Promega E2510
Humidified CO2 incubator Revco Ultima II
T-REx293 cell line Invitrogen R71007
Wallac 1420 software version 3.0 PerkinElmer instrument control software of the luminescence microplate reader

References

  1. Selkoe, D. J., Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 8 (6), 595-608 (2016).
  2. Wolfe, M. S., Guenette, S. Y. APP at a glance. J Cell Sci. 120 (Pt 18), 3157-3161 (2007).
  3. Karran, E., Mercken, M., De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 10 (9), 698-712 (2011).
  4. Citron, M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 9 (5), 387-398 (2010).
  5. Vassar, R., Kovacs, D. M., Yan, R., Wong, P. C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci. 29 (41), 12787-12794 (2009).
  6. Parks, A. L., Curtis, D. Presenilin diversifies its portfolio. Trends Genet. 23 (3), 140-150 (2007).
  7. Kukar, T. L., et al. Substrate-targeting gamma-secretase modulators. Nature. 453 (7197), 925-929 (2008).
  8. Kounnas, M. Z., et al. Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. Neuron. 67 (5), 769-780 (2010).
  9. Thathiah, A., et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science. 323 (5916), 946-951 (2009).
  10. Flajolet, M., et al. Regulation of Alzheimer’s disease amyloid-beta formation by casein kinase I. Proc Natl Acad Sci U S A. 104 (10), 4159-4164 (2007).
  11. Eisele, Y. S., et al. Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol Biol Cell. 18 (9), 3591-3600 (2007).
  12. He, G., et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature. 467 (7311), 95-98 (2010).
  13. Haapasalo, A., Kovacs, D. M. The many substrates of presenilin/gamma-secretase. J Alzheimers Dis. 25 (1), 3-28 (2011).
  14. Gillman, K. W., et al. Discovery and Evaluation of BMS-708163, a Potent, Selective and Orally Bioavailable gamma-Secretase Inhibitor. ACS Med Chem Lett. 1 (3), 120-124 (2010).
  15. Hopkins, C. R. ACS chemical neuroscience molecule spotlight on Begacestat (GSI-953). ACS Chem Neurosci. 3 (1), 3-4 (2012).
  16. Yang, T., Arslanova, D., Gu, Y., Augelli-Szafran, C., Xia, W. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain. 1, 15 (2008).
  17. McKee, T. D., Loureiro, R. M., Dumin, J. A., Zarayskiy, V., Tate, B. An improved cell-based method for determining the gamma-secretase enzyme activity against both Notch and APP substrates. J Neurosci Methods. 213 (1), 14-21 (2013).
  18. Basi, G. S., et al. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers Res Ther. 2 (6), 36 (2010).
  19. Liao, Y. F., Tang, Y. C., Chang, M. Y., Wang, B. J., Hu, M. K. Discovery of small molecular (D)-leucinamides as potent, Notch-sparing gamma-secretase modulators. Eur J Med Chem. 79, 143-151 (2014).
  20. Liao, Y. F., Wang, B. J., Cheng, H. T., Kuo, L. H., Wolfe, M. S. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. 279 (47), 49523-49532 (2004).
  21. Wang, B. J., et al. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer’s disease. Proc Natl Acad Sci U S A. 114 (15), E3129-E3138 (2017).
  22. Sevigny, J., et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 537 (7618), 50-56 (2016).
  23. Golde, T. E., Koo, E. H., Felsenstein, K. M., Osborne, B. A., Miele, L. gamma-Secretase inhibitors and modulators. Biochim Biophys Acta. 1828 (12), 2898-2907 (2013).
  24. Coric, V., et al. Targeting Prodromal Alzheimer Disease With Avagacestat: A Randomized Clinical Trial. JAMA Neurol. 72 (11), 1324-1333 (2015).
  25. Mitani, Y., et al. Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci. 32 (6), 2037-2050 (2012).
  26. Penninkilampi, R., Brothers, H. M., Eslick, G. D. Pharmacological Agents Targeting gamma-Secretase Increase Risk of Cancer and Cognitive Decline in Alzheimer’s Disease Patients: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 53 (4), 1395-1404 (2016).
check_url/kr/56795?article_type=t

Play Video

Cite This Article
Wang, B., Wu, P., Chen, Y., Chang, Y., Bhore, N., Wu, P., Liao, Y. Quantitative Measurement of γ-Secretase-mediated Amyloid Precursor Protein and Notch Cleavage in Cell-based Luciferase Reporter Assay Platforms. J. Vis. Exp. (131), e56795, doi:10.3791/56795 (2018).

View Video