Summary

Azlactone 功能块共聚物的刷状和交联膜制备反应表面

Published: June 30, 2018
doi:

Summary

报道了 azlactone 块共聚合物纳米厚刷或微米厚、交联膜的表面制备方法。讨论了关键的实验步骤、代表性结果和每个方法的局限性。这些方法对于创建具有定制物理特性和可调谐表面反应性的功能接口非常有用。

Abstract

本文介绍了利用 azlactone 基块共聚合物、聚 (甲基丙烯酸缩水甘油)-块状聚 (乙烯二甲基 azlactone) (飞碟bPVDMA) 生成新表面的制备方法。由于 azlactone 基团对胺、硫醇和羟基基团的高反应性, 飞碟-bPVDMA 表面可以通过二次分子进行修饰, 从而为各种应用创造化学或生物功能化界面。以前的飞碟-b-PVDMA 界面的报告使用了传统的自上而下的模式技术, 产生不均匀的薄膜和控制不善的背景化学。在这里, 我们描述了定制的模式技术, 使高均匀的飞碟bPVDMA 薄膜在化学惰性或具有分子的性质的背景下精确沉积。重要的是, 这些方法旨在以一种完全保留 azlactone 功能的方式, 通过每个处理步骤来存放飞碟-bPVDMA 薄膜。图案化的薄膜显示了与聚合物刷子 (90 nm) 或高度交联结构 (~ 1-10 微米) 相对应的良好控制厚度。画笔图案是使用派瑞林升力或接口定向装配方法生成的, 它对于通过调整飞碟-bPVDMA 模式密度或VDMA 块的长度。相比之下, 厚, 交联的飞碟-PVDMA 模式是通过定制的微接触印刷技术, 并提供了较高的加载或捕获二次材料由于较高的表面积, 体积比。讨论了各制造方法的详细实验步骤、关键胶片特征和故障排除指南。

Introduction

开发制造技术, 允许对化学和生物表面功能进行广泛和精确的控制, 对于各种应用, 从捕捉环境污染物到下一代的发展都是可取的。生物传感器, 植入物和组织工程设备1,2。功能高分子是通过 “嫁接” 或 “嫁接到” 技术3来调节表面性能的优良材料。这些方法允许控制的表面反应性的基础上的化学功能的单体和分子量的聚合物4,5,6。Azlactone 聚合物在这一背景下受到了强烈的研究, 因为 Azlactone 组在开环反应中有不同亲核试剂的快速耦合。这包括主要胺, 醇, 硫醇和肼组, 从而提供了一个多功能的路线进一步表面功能化7,8。Azlactone 聚合物薄膜已被应用于不同的环境和生物应用, 包括分析物捕获9,10, 细胞培养6,11, 和防污/防粘涂料12。在许多生物应用中, azlactone 聚合物薄膜在纳米到千分尺长度尺度上是可取的, 有利于空间控制分子呈现, 细胞相互作用, 或调节表面相互作用13, 14,15,16,17,18。因此, 应开发制造方法, 以提供高模式均匀性和良好的控制膜厚度, 而不损害化学功能19

最近, Lokitz 开发了一种飞碟-b-PVDMA 嵌段共聚物, 能够操纵表面反应性。飞碟块对氧化-轴承表面, 产生高和可调谐的表面密度的 azlactone 组20。以前报告的模式, 这种聚合物的创建 biofunctional 接口使用传统的自上而下的光刻方法, 产生的非均匀聚合物薄膜的背景区域污染残留光刻胶材料, 造成高水平的非特异性化学和生物相互作用212223。在这里, 试图钝化背景区域引起交叉反应与 azlactone 组, 损害聚合物反应性。考虑到这些限制, 我们最近开发了用于图案刷 (~ 90 nm) 或高度交联 (~ 1-10 微米) 的飞碟-PVDMA 薄膜的技术, 使其在化学或生物惰性的背景下完全保留化学聚合物的功能24。这些方法利用派瑞林升降、接口定向组装 (IDA) 和自定义微接触打印 (μCP) 技术。本文以书面和视频格式介绍了这些模式方法的高度详细的实验方法, 以及与每种技术相关的关键胶片特征和挑战和限制。

Protocol

1. 飞碟乙PVDMA 合成20 飞碟宏链转移剂的合成 (宏 CTA) 使用250毫升的圆底反应flask 装有聚四氟乙烯涂层的磁力搅拌棒。 将14.2 克甲基丙烯酸缩水甘油 (142.18 克/摩尔) 与490.8 毫克2氰基-2-丙基月桂 trithiocarbonate (CPDT) (346.63 克/摩尔) 相结合, 和87.7 毫克的 2,2′-偶 (4-甲氧基 24-二甲基 valeronitrile) (V-70) (308.43 克/摩尔) (摩尔比 CPDT: V-70 =5:1), 和苯 (100 毫升) 的空气自…

Representative Results

接触角测量可用于评价硅与飞碟-PVDMA 的功能化。图 1描述了不同加工步骤中硅基板的接触角。等离子清洗硅基板的亲水性行为如图 1B所示。聚合物自旋涂层和退火后的接触角是 75° 1°(图 1C) , 它与 Lokitz等PVDMA 表面20所报告的值一致。 <p class="jove_content" fo:keep-togethe…

Discussion

本文提出了三种模式飞碟 PVDMA 的方法, 每个都有其优点和缺点。派瑞林升力法是一种通用的方法, 用于图形块共聚合体在微到纳米尺度的分辨率, 并已作为一个沉积面具在其他模式系统33,34,35。由于其表面附着力相对较弱, 在聚合物涂层后的溶剂中超声波可以很容易地从表面上去除派瑞林模具, 从而暴露出背景区域。背景?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了堪萨斯州立大学的支持。这项研究的一部分是在纳米材料科学中心进行的, 这是由科学用户设施司、美国能源部、能源科学办公室主办的橡树岭国家实验室。

Materials

Material
Ethanol, ≥ 99.5% Sigma-Aldrich 459844
HCL, 1.019 N in H2O Fluka Analytical 318949
Acetone, ≥ 99.5% Sigma-Aldrich 320110
Benzene, ≥ 99.9% Sigma-Aldrich 270709
Isopropanol, ACS reagent, ≥99.5% Sigma-Aldrich 190764
Hexane Fisher Chemical H292-4
Argon Matheson Gas G1901175
Tetrahydrofuran (THF), ≥ 99.9% Sigma-Aldrich 401757
Pluronic F-127 Sigma-Aldrich P2443
Polydimethyl Siloxane (PDMS) Slygard 184 Dow Corning 4019862
Trichloro (1H,1H,2H,2H-perfluorooctyl) silane (TPS), 97% Sigma-Aldrich 448931 It is toxic. Work with it under hood
Anhydrous Chloroform, ≥ 99% Sigma-Aldrich 372978
Positive Photoresist AZ1512 MicroChemicals AZ 1512 amber-red liquid, density 1.083 g/cm3, spin coating step should be done under the hood
Developer AZ 300 MIF MicroChemicals AZ300 MIF clear colourless liquid with slight amine odor and density of 1 g/cm3
1,2-Vinyl-4,4- dimethyl azlactone (VDMA) Isochem North America, LLC VDMA
2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) Sigma-Aldrich 723037
2,2′-Azobis (4methoxy-2,4-dimethyl valeronitrile) (V-70) Wako Specialty Chemicals CAS NO. 15545-97-8, EINECS No. 239-593-8
Parylene N Specialty Coating Systems 15B10004
Name Company Catalog Number Comments
Equipment
Parylene Coater Specialty Coating Systems SCS Labcoater (PDS 2010)
Mask alignment system Neutronix Quintel NXQ8000
Oxygen Plasma Etcher Oxford Instruments Plasma Lab System 100
Surface Profilometer Veeco Dektak 150 Scan type was standard hill. Scan duration and force were 120 s and 1 mg, respectively.
Brightfield Upright Microscope Olympus Corporation BX51
Oxygen Plasma  Cleaner Harrick Plasma PDC-001-HP
Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) Perkin Elmer ATR-FTIR 100
Atomic Force Microscopy (AFM) PicoPlus Picoplus atomic force microscope Veeco MLCT-E cantilevers with a 0.5 N/m spring constant. Scan speeds varied between 0.25 and 1 Hz.
Scanning Electron Microscopy (SEM) Hitachi Science Systems Ltd., Tokyo, Japan
Rotary Tool Workstation Dremel Model 220-01
Spin Coater Smart Coater SC100
Vacuum Oven Yamato Scientific Co. PCD-C6(5)000)
Size Exclusion Chromatography (SEC) Waters Alliance 2695 Separations Module 720004547EN
Refractive Index (RI) detector Waters Model 2414
Photodiode Array Detector Waters Model 2996, 716001286
Multi-angle Light Scattering (MALS) Detector Wyatt Technology miniDAWN TREOS II
Viscometer Wyatt Technology Viscostar
PLgel 5 µm mixed-C columns (300 x 7.5 mm) Agilent 5 µm mixed-C columns
Ellipsometer J. A. Woollam alpha-SE Cauchy model, PGMA and PVDMA layers had refractive indices of 1.50 and 1.52 at 632 nm
Ultrasonic Sonicator Fischer Scientific FS-110H

References

  1. Faia-Torres, A., Goren, T., Textor, M., Pla-Roca, M. Patterned Biointerfaces. Comprehensive biomaterials. , 181-201 (2017).
  2. Ogaki, R., Alexander, M., Kingshott, P. Chemical patterning in biointerface science. Materials Today. 13 (4), 22-35 (2010).
  3. Rungta, A., et al. Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization. Macromolecules. 45 (23), 9303-9311 (2012).
  4. Guyomard, A., Fournier, D., Pascual, S., Fontaine, L., Bardeau, J. Preparation and characterization of azlactone functionalized polymer supports and their application as scavengers. European Polymer Journal. 40 (10), 2343-2348 (2004).
  5. Zayas-Gonzalez, Y. M., Lynn, D. M. Degradable Amine-Reactive Coatings Fabricated by the Covalent Layer-by-Layer Assembly of Poly (2-vinyl-4, 4-dimethylazlactone) with Degradable Polyamine Building Blocks. Biomacromolecules. 17 (9), 3067-3075 (2016).
  6. Schmitt, S. K., et al. Peptide Conjugation to a Polymer Coating via Native Chemical Ligation of Azlactones for Cell Culture. Biomacromolecules. 17 (3), 1040-1047 (2016).
  7. Yu, Q., Cho, J., Shivapooja, P., Ista, L. K., López, G. P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Applied Materials & Interfaces. 5 (19), 9295-9304 (2013).
  8. Jones, M. W., Richards, S., Haddleton, D. M., Gibson, M. I. Poly (azlactone)s: versatile scaffolds for tandem post-polymerisation modification and glycopolymer synthesis. Pilymer Chemistry UK. 4 (3), 717-723 (2013).
  9. Barkakaty, B., et al. Amidine-Functionalized Poly (2-vinyl-4, 4-dimethylazlactone) for Selective and Efficient CO2 Fixing. Macromolecules. 49 (5), (2016).
  10. Cullen, S. P., Mandel, I. C., Gopalan, P. Surface-anchored poly (2-vinyl-4, 4-dimethyl azlactone) brushes as templates for enzyme immobilization. Langmuir. 24 (23), 13701-13709 (2008).
  11. Schmitt, S. K., et al. Polyethylene glycol coatings on plastic substrates for chemically defined stem cell culture. Advanced Healthcare Materials. 4 (10), 1555-1564 (2015).
  12. Yan, S., et al. Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture. ACS Applied Materials & Interfaces. 8 (37), 24471-24481 (2016).
  13. Li, C., et al. Creating "living" polymer surfaces to pattern biomolecules and cells on common plastics. Biomacromolecules. 14 (5), 1278-1286 (2013).
  14. Brétagnol, F., et al. Surface functionalization and patterning techniques to design interfaces for biomedical and biosensor applications. Plasma Processes and Polymers. (6-7), 443-455 (2006).
  15. Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. Journal of Cell Science. 123 (Pt 24), 4201-4213 (2010).
  16. Robertus, J., Browne, W. R., Feringa, B. L. Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chemical Soceity Reviews. 39 (1), 354-378 (2010).
  17. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials. 20 (23), 2363-2376 (1999).
  18. Cattani-Scholz, A., et al. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules. 10 (3), 489-496 (2009).
  19. Nie, Z., Kumacheva, E. Patterning surfaces with functional polymers. Nature Materials. 7 (4), (2008).
  20. Lokitz, B. S., et al. Manipulating interfaces through surface confinement of poly (glycidyl methacrylate)-block-poly (vinyldimethylazlactone), a dually reactive block copolymer. Macromolecules. 45 (16), 6438-6449 (2012).
  21. Kratochvil, M. J., Carter, M. C., Lynn, D. M. Amine-Reactive Azlactone-Containing Nanofibers for the Immobilization and Patterning of New Functionality on Nanofiber-Based Scaffolds. ACS Applied Materials & Interfaces. 9 (11), 10243-10253 (2017).
  22. Wancura, M. M., et al. Fabrication, chemical modification, and topographical patterning of reactive gels assembled from azlactone-functionalized polymers and a diamine. Journal of Polymer Science Part A1. 55 (19), 3185-3194 (2017).
  23. Hansen, R. R., et al. Lectin-functionalized poly (glycidyl methacrylate)-block-poly (vinyldimethyl azlactone) surface scaffolds for high avidity microbial capture. Biomacromolecules. 14 (10), 3742-3748 (2013).
  24. Masigol, M., Barua, N., Retterer, S. T., Lokitz, B. S., Hansen, R. R. Chemical copatterning strategies using azlactone-based block copolymers. Journal of Vacuum Science and TechnologyB. 35 (6), 06GJ01 (2017).
  25. Lokitz, B. S., et al. Dilute solution properties and surface attachment of RAFT polymerized 2-vinyl-4, 4-dimethyl azlactone (VDMA). Macromolecules. 42 (22), 9018-9026 (2009).
  26. Aden, B., et al. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly (2-vinyl-4, 4-dimethyl azlactone)(PVDMA) Chains. Macromolecules. 50 (2), 618-630 (2017).
  27. Hansen, R. H., et al. Stochastic assembly of bacteria in microwell arrays reveals the importance of confinement in community development. Public Library of Science One. 11 (5), e0155080 (2016).
  28. Vargis, E., Peterson, C. B., Morrell-Falvey, J. L., Retterer, S. T., Collier, C. P. The effect of retinal pigment epithelial cell patch size on growth factor expression. Biomaterials. 35 (13), 3999-4004 (2014).
  29. Tzvetkova-Chevolleau, T., et al. Microscale adhesion patterns for the precise localization of amoeba. Microelectronic Engineering. 86 (4), 1485-1487 (2009).
  30. Shelly, M., Lee, S., Suarato, G., Meng, Y., Pautot, S. Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development. Semaphorin Signaling: Methods and Protocols. 1493, 321-343 (2017).
  31. McDonald, J. C., et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 21 (1), 27-40 (2000).
  32. Hansen, R. R., et al. High content evaluation of shear dependent platelet function in a microfluidic flow assay. Annals of Biomedical Engineering. 41 (2), 250-262 (2013).
  33. Segalman, R. A., Yokoyama, H., Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Advanced Materials. 13 (15), 1152-1155 (2001).
  34. Stoykovich, M. P., et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science. 308 (5727), 1442-1446 (2005).
  35. Craig, G. S., Nealey, P. F. Self-assembly of block copolymers on lithographically defined nanopatterned substrates. Journal of Polymer Science and Technology. 20 (4), 511-517 (2007).
  36. Kodadek, T. Protein microarrays: prospects and problems. Chemical Biology. 8 (2), 105-115 (2001).
  37. Atsuta, K., Suzuki, H., Takeuchi, S. A parylene lift-off process with microfluidic channels for selective protein patterning. Journal of Micromechanics and Microengineering. 17 (3), 496 (2007).
  38. Ramanathan, M., Lokitz, B. S., Messman, J. M., Stafford, C. M., Kilbey, S. M. Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. Journal of Material Chemistry C. 1 (11), 2097-2101 (2013).
  39. Suh, K. Y., Jon, S. Control over wettability of polyethylene glycol surfaces using capillary lithography. Langmuir. 21 (15), 6836-6841 (2005).
  40. Buck, M. E., Lynn, D. M. Layer-by-Layer Fabrication of Covalently Crosslinked and Reactive Polymer Multilayers Using Azlactone-Functionalized Copolymers: A Platform for the Design of Functional Biointerfaces. Advanced Engineering Materials. 13 (10), 343-352 (2011).
  41. Ma, L., et al. Trap Effect of Three-Dimensional Fibers Network for High Efficient Cancer-Cell Capture. Advanced Healthcare Materials. 4 (6), 838-843 (2015).
  42. Massad-Ivanir, N., Shtenberg, G., Tzur, A., Krepker, M. A., Segal, E. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture". Analytical Chemistry. 83 (9), 3282-3289 (2011).
  43. Ilic, B., Craighead, H. Topographical patterning of chemically sensitive biological materials using a polymer-based dry lift off. Biomedical Microdevices. 2 (4), 317-322 (2000).
  44. Gates, B. D., et al. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews. 105 (4), 1171-1196 (2005).
  45. Jonas, U., del Campo, A., Kruger, C., Glasser, G., Boos, D. Colloidal assemblies on patterned silane layers. Proceedings of the National Academy of Sciences USA. 99 (8), 5034-5039 (2002).
  46. Qin, D., Xia, Y., Whitesides, G. M. Soft lithography for micro-and nanoscale patterning. Nature Protocols. 5 (3), 491-502 (2010).
check_url/kr/57562?article_type=t

Play Video

Cite This Article
Masigol, M., Barua, N., Lokitz, B. S., Hansen, R. R. Fabricating Reactive Surfaces with Brush-like and Crosslinked Films of Azlactone-Functionalized Block Co-Polymers. J. Vis. Exp. (136), e57562, doi:10.3791/57562 (2018).

View Video