Summary

إعداد تشيموسيليكتيفي 1-إيودوالكينيس، دييودوالكينيس 1 و 2، واستنادا إلى الأكسدة الموجودة في المحطة الطرفية الكينس 1,1,2-ترييودوالكينيس

Published: September 12, 2018
doi:

Summary

وترد هنا، بروتوكولات مفصلة للأكسدة الموجودة من alkynes الطرفية استخدام الكواشف اليود هايبرفالينت، تشيموسيليكتيفيلي التي تحمل إيودوالكينيس 1 و 1، 2-دييودوالكينيس 1,1,2-ترييودوالكينيس.

Abstract

نقدم توليف تشيموسيليكتيفي 1–(إيودوثينيل)-4-ميثيلبينزيني و-(1,2-diiodovinyl) 1-4-ميثيلبينزيني 1-الميثيل-4–(1,2,2-ترييودوفينيل) البنزين كأمثلة لإعداد عملية تشيموسيليكتيفي 1-إيودوالكينيس ، 1، 2-دييودوالكينيس، وترييودوالكينيس 1,1,2 من وكوسميت تشيموسيليكتيفي من المحطة الطرفية الكينس توسط الكواشف هايبرفالينت-اليود. وأكد تشيموسيليكتيفيتي استخدام p-توليليثيني كركيزة نموذجية لفرز مجموعة متنوعة من مصادر اليود و/أو الكواشف هايبرفالينت-اليود. بشكل انتقائي يولد مزيجاً من يوديد تيترابوتيلامونيوم (تباي) والبنزين (دياسيتوكسييودو) (PIDA) 1-إيودوالكينيس، بينما يولد مزيجاً من كي و PIDA دييودوالكينيس 1 و 2. توليفة وعاء واحد على أساس PIDA تباي وكي PIDA غلة المقابلة 1,1,2-ترييودوالكينيس. وطبقت هذه البروتوكولات لاحقاً على توليف العطرية صناعيا هاما والاليفاتيه 1-إيودوالكينيس و 1، 2–دييودوالكينيس 1,1,2-ترييودوالكينيس، التي تم الحصول عليها في الغلة جيدة مع تشيموسيليكتيفيتي ممتازة.

Introduction

إيودوالكينيس وإيودوالكينيس بالسلائف الهامة المستخدمة على نطاق واسع واللبنات في توليف العضوية1،2،،من34، المواد النشيطة بيولوجيا، ومفيدة في تركيب مواد وجزيئات معقدة نظراً لسهولة تحويل ج-أنا السندات5،6،،من78. في السنوات الأخيرة، جذبت الأكسدة الموجودة في المحطة الطرفية الكينس مزيدا من الاهتمام تخليق مشتقات إيودوالكيني وإيودوالكيني. وحتى الآن، وكفاءة الأساليب التي تستخدم محفزات معدنية9،10،،من1112،13،المواد الحفازة هايبرفالينت-إيودونيوم14، نظام أكسدة انوديك 15، ونظم السوائل الأيونية16، كي (أو2)-الأكسدة تركيبات17،18،،من1920،21من الموجات فوق الصوتية، المرحلة-نقل المواد الحفازة 22، ن-إيودوسوكسينيميدي9،،من2223،24،25، n-بولي26،27، 28 , 29 , 30 , 31و كواشف غرينيار32morpholine محفزات17،33،،من2435 وضعت للموجودة الكينس. في الآونة الأخيرة، وقد أبلغنا بروتوكول تشيموسيليكتيفي وعملي لتوليف 1-إيودوالكينيس و 1، 2–دييودوالكينيس 1,1,2-ترييودوالكينيس36. ميزات هذا الأسلوب الخضراء والعملية: (1) سمية المواد الحفازة هايبرفالينت-اليود الكواشف الروغان الأكسدة منخفضة مقارنة بغيرها التأكسد التقليدية المستندة إلى المعادن الثقيلة37،38، 39،40،،من4142، و (2) تباي كي تستخدم كمصادر اليود. وبالإضافة إلى ذلك، يوفر نظامنا الانتقائية ممتازة تحت ظروف معتدلة. توليف تشيموسيليكتيفي 1-إيودوالكينيس و 1، 2–دييودوالكينيس 1,1,2-ترييودوالكينيس يتطلب دقة السيطرة على عوامل مختلفة، بما في ذلك التشكيل ومضادة الأكسدة ومصدر اليود والمذيب. ومن بين هذه، مصدر اليود هو أهم عامل تشيموسيليكتيفيتي من رد فعل. وبعد فحص عدة أنواع وحمولات مصدر اليود، فضلا عن المذيبات، وحددت ثلاثة أساليب والمنشأة. أولاً، تباي كمصدر لليود في تركيبة مع PIDA (تباي-PIDA) انتقائية لتوليف 1-إيودوالكينيس. بدلاً من ذلك، 1، 2-دييودوالكينيس هي كفاءة الحصول عليها باستخدام نظام لكي PIDA. كلا الأسلوبين تحمل المنتجات عالية الغلة وارتفاع تشيموسيليكتيفيتي بالمقابلة. إيوديناتيونبرودوكتس ثلاثي المقابلة، أي.، 1,1,2-ترييودوالكينيس، وتحققت في الغلة جيدة من التوليف وعاء واحد تجمع بين نظم PIDA تباي وكي PIDA36.

هنا، وسوف نظهر كيف يمكن أن قاد تشيموسيليكتيفيتي للموجودة في المحطة الطرفية الكينس من 1-إيودوالكينيس 1 و 2-دييودوالكينيس و 1,1,2-ترييودوالكينيس في ظروف رد فعل مماثل، تسليط الضوء على عنصر التحكم الدقيقة التي يمكن أن تكون تمارس بحكمة اختيار الأكسدة ومصدر اليود، والمذيبات. لتطوير هذه التقنية الجديدة الاصطناعية، فتوليليثيني كركيزة نموذجية. على الرغم من أن البروتوكولات التالية تركز على توليف 1–(إيودويثينيل)-4-ميثيلبينزيني، (ه)-1-(1,2-diiodovinyl)-4-ميثيلبينزيني، و 1-الميثيل-4–(1,2,2-ترييودوفينيل) البنزين، وهذه المركبات هي الممثل إيودوالكينيس-1، 1، 2- دييودوالكينيس، و 1,1,2-ترييودوالكينيس، على التوالي، أيالبروتوكولات واسعة النطاق، ويمكن تطبيق نفس الأساليب الموجودة تشيموسيليكتيفي الكينس الطرفية الاليفاتيه والعطرية36.

الكواشف المستخدمة في وكوسميت تشيموسيليكتيفي من الكينس الطرفية وانحرافات صغيرة من التقنيات المذكورة نتيجة اختلافات كبيرة فيما يتعلق بالمنتجات المستهدفة. على سبيل المثال، تغيير مصدر اليود من تباي لكي والمتغيرة للمذيبات من CH3أهي إلى CH3CN-ح2س له أثر هائل على تشيموسيليكتيفيتي للموجودة. البروتوكول مفصلاً يهدف إلى مساعدة الممارسين جديدة في هذا المجال مع وكوسميت تشيموسيليكتيفي من الكينس الطرفية لتجنب المزالق الشائعة العديد من خلال التوليف من 1-إيودوالكينيس و 1، 2–دييودوالكينيس 1,1,2-ترييودوالكينيس.

Protocol

1-تجميع 1–(إيودوثينيل)-4-ميثيلبينزيني (2، 1-إيودوالكينيس) إضافة 133 ملغ (0.36 ملمول) تباي ومل 3 CH3أهي إلى رد فعل أنبوب يحتوي على حانة إثارة مغناطيسية، ومفتوحة للهواء. ثم قم بإضافة 38 μL (0.3 ميللي مول) من فتوليليثيني للمخلوط باستخدام ميكروسيرينجي. إضافة 96.6 ملغ (0.3 ميللي مول) من …

Representative Results

ويرد في الشكل 1التوليف تشيموسيليكتيفي 1-إيودوالكينيس، دييودوالكينيس 1 و 2، واستنادا إلى عنصر مؤكسد الموجودة من فتوليليثيني 1,1,2-ترييودوالكينيس. جميع ردود الفعل تعرضت للهواء. تميزت جميع المركبات في هذه الدراسة 1ح وأطياف “الرنين المغناطيسي النووي ج” 13</…

Discussion

1-إيودوالكينيس و 1، 2–دييودوالكينيس 1,1,2-ترييودوالكينيس يمكن تصنيعه باستخدام الكواشف هايبرفالينت-اليود كوسيط فعال للأكسدة iodination(s) تشيموسيليكتيفيلي. هي أهم العوامل لهذه البروتوكولات الموجودة تشيموسيليكتيفي الطبيعة وتحميل مصدر اليود، فضلا عن المذيبات. على سبيل المثال، تم الحصول على إيودو?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

وأيد هذا العمل “الوطني طبيعة العلم مؤسسة في الصين” (21502023).

Materials

4-ethynyltoluene,98% Energy Chemical D080006
phenylacetylene,98% Energy Chemical W330041
1-ethynyl-4-methoxybenzene,98% Energy Chemical D080007
1-ethynyl-4-fluorobenzene,98% Energy Chemical D080005
4-(Trifluoromethyl)phenylacetylene,98% Energy Chemical W320273
4-Ethynylbenzoic acid methyl ester,97% Energy Chemical A020720
3-Aminophenylacetylene,97% Energy Chemical D080001
3-Butyn-1-ol,98% Energy Chemical A040031
Propargylacetate,98% Energy Chemical L10031
Tetrabutylammonium Iodide,98% Energy Chemical E010070
Potassium iodide,98% Energy Chemical E010364
(diacetoxyiodo)benzene,99% Energy Chemical A020180
acetonitrile, HPLC grade fischer A998-4
magnetic stirrer IKA
rotary evaporator Buchi
Bruker AVANCE III 400 MHz Superconducting Fourier Bruker
High-performance liquid chromatography Shimadzu

References

  1. Sun, G. D., Wei, M. J., Luo, Z. H., Liu, Y. J., Chen, Z. J., Wang, Z. Q. An Alternative Scalable Process for the Synthesis of the Key Intermediate of Omarigliptin. Organic Process Research & Development. 20 (12), 2074-2079 (2016).
  2. Wang, D., Chen, S., Chen, B. H. Green synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters. 55 (51), 7026-7028 (2014).
  3. Chen, Z. W., Zeng, W., Jiang, H. F., Liu, L. X. Cu(II)-Catalyzed Synthesis of Naphthalene-1,3-diamine Derivatives from Haloalkynes and Amines. Organic Letters. 14 (21), 5385-5387 (2012).
  4. Boutin, R. H., Rapoport, H. α-Amino acid derivatives as chiral educts for asymmetric products. Synthesis of sphingosine from α′-amino-α,β-ynones. The Journal of Organic Chemistry. 51 (26), 5320-5327 (1986).
  5. Heravi, M. M., Asadi, S., Nazari, N., Lashkariani, B. M. Developments of Corey-Fuchs Reaction in Organic and Total Synthesis of Natural Products. Current Organic Chemistry. (21), 2196-2219 (2015).
  6. Vaidyanathan, G., McDougald, D., Koumarianou, E., Choi, J., Hens, M., Zalutsky, M. R. Synthesis and evaluation of 4-[18F]fluoropropoxy-3-iodobenzylguanidine ([18F]FPOIBG): A novel 18F-labeled analogue of MIBG. Nuclear Medicine and Biology. 42 (8), 673-684 (2015).
  7. Butini, S., Gemma, S., Brindisi, M., Borrelli, G., Lossani, A., Ponte, A. M., Torti, A., Maga, G., Marinelli, L., La Pietra, V., Fiorini, I., Lamponi, S., Campiani, G., Zisterer, D. M., Nathwani, S. M., Sartini, S., La Motta, C., Da Settimo, F., Novellino, E., Focher, F. Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry. 54 (5), 1401-1420 (2011).
  8. Kabalka, G. W., Shoup, T. M., Daniel, G. B., Goodman, M. M. Synthesis and evaluation of a new series of 17alpha-[(123)I]iodovinyl estradiols. Nuclear Medicine & Biology. 27 (3), 279-287 (2000).
  9. Lei, C. H., Jin, X. J., Zhou, J. R. Palladium-Catalyzed Alkynylation and Concomitant ortho Alkylation of Aryl Iodides. ACS Catalysis. 6, 1635-1639 (2016).
  10. Chen, W. W., Zhang, J. L., Wang, B., Zhao, Z. X., Wang, X. Y., Hu, Y. F. Tandem Synthesis of 3-Chloro-4-iodoisoxazoles from 1-Copper(I) Alkynes, Dichloroformaldoxime, and Molecular Iodine. The Journal of Organic Chemistry. 80 (4), 2413-2417 (2015).
  11. Brotherton, W. S., Clark, R. J., Zhu, L. Synthesis of 5-Iodo-1,4-disubstituted-1,2,3-triazoles Mediated by in Situ Generated Copper(I) Catalyst and Electrophilic Triiodide Ion. The Journal of Organic Chemistry. 77 (15), 6443-6455 (2012).
  12. Abe, H., Suzuki, H. Copper-Mediated Nucleophilic Displacement Reactions of 1-Haloalkynes. Halogen-Halogen Exchange and Sulfonylation. Bulletin of the Chemical Society of Japan. 72 (4), 787-798 (1999).
  13. Yan, J., Li, J., Cheng, D. Novel and Efficient Synthesis of 1-Iodoalkynes. Synlett. 2007 (15), 2442-2444 (2007).
  14. Ochiai, M., Uemura, K., Masaki, Y. J. α- versus β-Elimination of (Z)-( α-Halovinyl)iodonium Salts: Generation of α-Haloalkylidene Carbenes and Their Facile Intramolecular 1,2-Migration. Journal of the American Chemical Society. 115 (6), 2528-2529 (1993).
  15. Nishiguchi, I., Kanbe, O., Itoh, K., Maekawa, H. Facile Iodination of Terminal Acetylenes by Anodic Oxidation in the Presence of NaI. Cheminform. 2000 (1), 89-91 (2000).
  16. Nouzarian, M., Hosseinzadeh, R., Golchoubian, H. Ionic Liquid Iodinating Reagent for Mild and Efficient Iodination of Aromatic and Heteroaromatic Amines and Terminal Alkynes. Synthetic Communications. 43 (21), 2913-2925 (2013).
  17. Mader, S., Molinari, L., Rudolph, M., Rominger, F., Hashmi, A. S. K. Dual Gold-Catalyzed Head-to-Tail Coupling of Iodoalkynes. Chemistry-A European Journal. 21 (10), 3910-3913 (2015).
  18. Jiang, Q., Wang, J. Y., Guo, C. C. (NH4)2S2O8-Mediated Diiodination of Alkynes with Iodide in Water: Stereospecific Synthesis of (E)-Diiodoalkenes. Synthesis. 47 (14), 2081-2087 (2015).
  19. Madabhushi, S., Jillella, R., Mallu, K. K. R., Godala, K. R., Vangipuram, V. S. A new and efficient method for the synthesis of α,α-dihaloketones by oxyhalogenation of alkynes using oxone®-KX (X=Cl, Br, or I). Tetrahedron Letters. 54 (30), 3993-3996 (2013).
  20. Reddy, K. R., Venkateshwar, M., Maheswari, C. U., Kumar, P. S. Mild and efficient oxy-iodination of alkynes and phenols with potassium iodide and tert-butyl hydroperoxide. Tetrahedron Letters. 51 (16), 2170-2173 (2010).
  21. Stefani, H. A., Cella, R., Dorr, F. A., de Pereira, C. M. P., Gomes, F. P., Zeni, G. Ultrasound-assisted synthesis of functionalized arylacetylenes. Tetrahedron Letters. 46 (12), 2001-2003 (2005).
  22. Naskar, D., Roy, S. 1-Haloalkynes from Propiolic Acids: A Novel Catalytic Halodecarboxylation Protocol. The Journal of Organic Chemistry. 64 (18), 6896-6897 (1999).
  23. Gómez-Herrera, A., Nahra, F., Brill, M., Nolan, S. P., Cazin, C. S. J. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes. ChemCatChem. 8 (21), 3381-3388 (2016).
  24. Wang, B., Zhang, J. L., Wang, X. Y., Liu, N., Chen, W. W., Hu, Y. F. Tandem Reaction of 1-Copper(I) Alkynes for the Synthesis of 1,4,5-Trisubstituted 5-Chloro-1,2,3-triazoles. The Journal of Organic Chemistry. 78 (20), 10519-10523 (2013).
  25. Li, M., Li, Y., Zhao, B., Liang, F., Jin, L. Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions. RSC Advances. 4 (57), 30046-30049 (2014).
  26. Pérez, J. M., Crosbie, P., Lal, S., Díez-González, S. Copper (I)-Phosphinite Complexes in Click Cycloadditions: Three-Component Reactions and Preparation of 5-Iodotriazoles. ChemCatChem. 8 (13), 2222-2226 (2016).
  27. Wilkins, L. C., Lawson, J. R., Wieneke, P., Rominger, F., Hashmi, A. S. K., Hansmann, M. M., Melen, R. L. The Propargyl Rearrangement to Functionalised Allyl-Boron and Borocation Compounds. Chemistry-A European Journal. 22 (41), 14618-14624 (2016).
  28. Usanov, D. L., Yamamoto, H. Enantioselective Alkynylation of Aldehydes with 1-Haloalkynes Catalyzed by Tethered Bis(8-quinolinato) Chromium Complex. Journal of the American Chemical Society. 133 (5), 1286-1289 (2011).
  29. Luithle, J. E. A., Pietruszka, J. Synthesis of Enantiomerically Pure cis-Cyclopropylboronic Esters. European Journal of Organic Chemistry. 2000 (14), 2557-2562 (2000).
  30. Blackmore, I. J., Boa, A. N., Murray, E. J., Dennis, M., Woodward, S. A simple preparation of iodoarenes, iodoalkenes and iodoalkynes by reaction of organolithiums with 2,2,2-trifluoro-1-iodoethane. Tetrahedron Letters. 40 (36), 6671-6672 (1999).
  31. Lee, G. C. M., Tobias, B., Holmes, J. M., Harcourt, D. A., Garst, M. E. A new synthesis of substituted fulvenes. Journal of the American Chemical Society. 112 (25), 9330-9336 (1990).
  32. Rao, M. L. N., Periasamy, M. A Simple Convenient Method for the Synthesis of 1-Iodoalkynes. Synthetic Communications. 25 (15), 2295-2299 (1995).
  33. Zeiler, A., Ziegler, M. J., Rudolph, M., Rominger, F., Hashmi, A. S. K. Scope and Limitations of the Intermolecular Furan-Yne Cyclization. Advanced Synthesis & Catalysis. 357 (7), 1507-1514 (2015).
  34. Dumele, O., Wu, D. N., Trapp, N., Goroff, N., Diederich, F. Halogen Bonding of (Iodoethynyl)benzene Derivatives in Solution. Organic Letters. 16 (18), 4722-4725 (2014).
  35. Hashmi, A. S. K., Dopp, R., Lothschutz, C., Rudolph, M., Riedel, D., Rominger, F. Scope and Limitations of Palladium-Catalyzed Cross-Coupling Reactions with Organogold Compounds. Advanced Synthesis & Catalysis. 352 (8), 1307-1314 (2010).
  36. Liu, Y., Huang, D., Huang, J., Maruoka, K. Hypervalent Iodine Mediated Chemoselective Iodination of Alkynes. The Journal of Organic Chemistry. 82 (22), 11865-11871 (2017).
  37. Wang, X., Studer, A. Iodine (III) Reagents in Radical Chemistry. Accounts of Chemical Research. 50 (7), 1712-1724 (2017).
  38. Yoshimura, A., Zhdankin, V. V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews. 116 (5), 3328-3435 (2016).
  39. Charpentier, J., Fruh, N., Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chemical Reviews. 115 (2), 650-682 (2015).
  40. Zhdankin, V. V., Protasiewicz, J. D. Development of new hypervalent iodine reagents with improved properties and reactivity by redirecting secondary bonds at iodine center. Coordination Chemistry Reviews. 275 (16), 54-62 (2014).
  41. Stang, P. J., Zhdankin, V. V. Organic Polyvalent Iodine Compounds. Chemical Reviews. 96 (3), 1123-1178 (1996).
  42. Kohlhepp, S. V., Gulder, T. Hypervalent iodine(III) fluorinations of alkenes and diazo compounds: new opportunities in fluorination chemistry. Chemical Society Reviews. 45 (22), 6270-6288 (2016).
  43. Hein, J. E., Tripp, J. C., Krasnova, L. B., Sharpless, K. B., Fokin, V. V. Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes. Angewandte Chemie International Edition. 48 (43), 8018-8021 (2009).
check_url/kr/58063?article_type=t

Play Video

Cite This Article
Li, Y., Huang, D., Huang, J., Liu, Y., Maruoka, K. Chemoselective Preparation of 1-Iodoalkynes, 1,2-Diiodoalkenes, and 1,1,2-Triiodoalkenes Based on the Oxidative Iodination of Terminal Alkynes. J. Vis. Exp. (139), e58063, doi:10.3791/58063 (2018).

View Video