Summary

Störung der Frontallappen neuronale Synchronität während kognitive Kontrolle durch Alkoholvergiftung

Published: February 06, 2019
doi:

Summary

Dieses Experiment verwendet eine anatomisch eingeschränkt Magnetoenzephalographie (aMEG)-Methode, um Gehirn oszillierende Dynamik und langfristige funktionelle Synchronität während Engagement der kognitiven Kontrolle in Abhängigkeit von akuter Alkoholvergiftung zu untersuchen.

Abstract

Entscheidungsfindung stützt sich auf dynamische Interaktionen von verteilten, in erster Linie frontalen Hirnregionen. Umfangreiche Belege aus Studien der funktionellen Magnetresonanztomographie (fMRT) zeigt, dass der anterioren cingulären (ACC) und der lateralen präfrontalen Cortex (LatPFC) wichtige Knoten Gesichtskreises kognitive Kontrolle. Jedoch kann nicht wegen seiner begrenzten zeitlichen Auflösung fMRI das Timing und die Natur von ihrer mutmaßlichen Zusammenspiel widerspiegeln. Die vorliegende Studie verbindet verteilten Quelle Modellierung des Signals zeitlich präzise Magnetoenzephalographie (MEG) mit strukturellen MRT in Form von “Gehirn-Filme” auf: (1) Schätzung der kortikalen Bereiche kognitive Kontrolle beteiligt (“wo”), (2) charakterisieren ihrer zeitlichen Abfolge (“Wann”), und (3) die oszillierende Dynamik ihrer neuronalen Interaktionen in Echtzeit zu quantifizieren. Stroop-Interferenz wurde während der Konflikterkennung gefolgt von nachhaltigen Empfindlichkeit an kognitiven Anforderungen in der ACC und LatPFC bei Integration und Antwort Vorbereitung mehr veranstaltungsbezogenen Theta (4-7 Hz) macht in der ACC zugeordnet. Eine Phase-Verriegelung Analyse ergab co-oscillatory Interaktionen zwischen diesen Bereichen ihre erhöhte neuronale Synchronität im Theta-Band während der Konflikt-induzierende unpassend Studien angibt. Diese Ergebnisse bestätigen, dass Theta-Schwingungen für Langstrecken Synchronisierung benötigt für die Integration von Top-Down-Einflüsse während kognitive Kontrolle von grundlegender Bedeutung sind. MEG spiegelt wider, dass neuronaler Aktivität direkt, der macht es geeignet für pharmakologische Manipulationen im Gegensatz zur fMRT, die empfindlich auf vasoaktive verwirrt. In der vorliegenden Studie erhielten gesunde soziale Trinker eine moderate Alkohol Dosis und Placebo in einem im Thema Design. Akute Intoxikation gedämpft Theta macht, Stroop Konflikt- und Dysregulated Co Oszillationen zwischen ACC und LatPFC, bestätigt, dass Alkohol neuronale Synchronität Gesichtskreises kognitive Kontrolle schadet. Es stört zielgerichtetes Verhalten, die mangelhafte Selbstbeherrschung, zur zwanghaften trinken führen kann. Kurzum, diese Methode kann Einblick in Echtzeit-Interaktionen bei der kognitiven Verarbeitung und kann über entsprechende neuronale Netze die selektive Sensibilität für pharmakologische Herausforderung charakterisieren.

Introduction

Das übergeordnete Ziel dieser Studie ist es, die Auswirkungen von akuter Alkoholvergiftung auf räumlich-zeitliche Veränderungen im Gehirn oszillierende Dynamik und weiträumige Funktionsintegration während kognitive Kontrolle zu untersuchen. Die eingesetzten multimodale Bildgebung Ansatz verbindet Magnetoenzephalographie (MEG) und strukturelle Magnetresonanztomographie (MRT), Einblick in die neuronalen Grundlagen der Entscheidungsfindung mit hoher zeitlicher Präzision und auf der Ebene der ein interaktives System.

Flexibles Verhalten macht es möglich, zur Anpassung an die wechselnden Anforderungen der kontextueller und strategisch zwischen verschiedenen Aufgaben und Anforderungen im Einvernehmen mit den Absichten und Ziele wechseln. Die Fähigkeit, automatische Antworten zu Gunsten zielrelevante aber nicht gewöhnlichen Handlungen zu unterdrücken ist ein wesentlicher Aspekt der kognitiven Kontrolle. Umfangreiche Hinweise darauf, dass es durch ein überwiegend frontalen kortikalen Netz mit der anterioren cingulären Cortex (ACC) als zentraler Knoten in diesem interaktiven Netzwerk1,2,3,4subserved ist. Während die reichlich vorhandenen anatomischen Konnektivität zwischen ACC und seitlichen frontalen Cortex gut beschriebene5,6, die funktionellen Eigenschaften der Kommunikation zwischen diesen Regionen während kognitive Kontrolle, Antwort-Auswahl ist und Ausführung, sind schlecht verstanden.

Die einflussreiche Konflikt Theorie7,8 Überwachung schlägt vor, dass kognitive Kontrolle von einer dynamischen Interaktion zwischen dem medialen und lateralen präfrontalen Cortex entsteht. Dieses Konto behauptet, dass die ACC Konflikt zwischen konkurrierenden Repräsentationen überwacht und lateralen präfrontalen Cortex (LatPFC greift), Antwort-Steuerelement implementieren und optimieren die Leistung. Dieses Konto beruht jedoch in erster Linie auf die funktionellen MRT (fMRT) Studien über das Blut Sauerstoffversorgung Level abhängigen (BOLD) Signal. Die fMRT-Fett-Signal ist eine hervorragende räumliche Mapping-Tool, aber seine zeitliche Auflösung ist begrenzt, da es regionale hämodynamische Veränderungen vermittelt durch neurovaskuläre Kopplung widerspiegelt. Dadurch entfalten die kühnen Signaländerungen auf einer viel langsameren Zeitskala (in Sekunden) als die zugrunde liegenden neuronalen Ereignissen (in Millisekunden)9. Darüber hinaus ist das Fett Signal reagiert empfindlich auf Alkohol die vasoaktive Effekte10 und entsprechen möglicherweise nicht genau das Ausmaß der neuronalen Veränderungen, wodurch es weniger geeignet für Studien von akuter Alkoholvergiftung. Daher vermuteten Zusammenspiel der medialen und lateralen präfrontalen Cortex und seine Empfindlichkeit auf Alkohol Intoxikation durch Methoden zu prüfen, die neuralen Ereignisse zeitlich präzise zu erfassen. MEG hat eine ausgezeichnete Zeitauflösung, da sie direkt postsynaptischen Ströme widerspiegelt. Die anatomisch eingeschränkt MEG (aMEG) verwendeten Methodik hier ist ein multimodaler Ansatz, der kombiniert Quelle Modellierung des MEG Signals mit strukturellen MRT verteilt. Es ermöglicht die Abschätzung von denen , die die konfliktbezogenen und Getränkeindustrie oszillierenden Veränderungen im Gehirn auftreten und der zeitlichen Abfolge (“Wenn”) der beteiligten neuronalen Komponenten zu verstehen.

Entscheidungsfindung stützt sich auf die Wechselwirkungen von verteilten Hirnregionen, die dynamisch mit erhöhten Anforderungen an kognitive Kontrolle tätig sind. Eine Möglichkeit, veranstaltungsbezogene Änderungen in weiträumigen Synchronität zwischen zwei kortikalen Regionen zu schätzen ist die Kopplung als Index für ihre Co Schwingungen11,12Phase berechnen. Die vorliegende Studie angewendet eine Phase-Verriegelung Analyse um das Grundprinzip des Konflikts Überwachung Theorie durch die Untersuchung der co-oscillatory Wechselwirkungen zwischen ACC und LatPFC zu testen. Neuronale Oszillationen im Theta-Bereich (4-7 Hz) sind kognitive Kontrolle zugeordnet und sind vorgeschlagen worden, als ein grundlegender Mechanismus unterstützt die langfristige Synchronisation für Top-Down-kognitive Verarbeitung13,14benötigt, 15,16. Sie entstehen im präfrontalen Bereich als Funktion der Schwierigkeit der Aufgabe und werden erheblich abgeschwächt durch akute Alkohol Vergiftung17,18,19,20.

Langfristiger übermäßiger Alkoholkonsum ist mit einer Reihe von kognitiven Defiziten einher mit präfrontalen Schaltung besonders betroffenen21,22. Akuter Alkoholvergiftung wirkt sich nachteilig auf die kognitive Kontrolle unter Umständen größere Schwierigkeiten, Unklarheiten oder diejenigen, die Antwort Inkompatibilität17,23,24zu induzieren. Durch Einwirkung auf die Entscheidungsfindung, Alkohol kann zielgerichtetes Verhalten stören, kann schlechte Selbstkontrolle und erhöhte trinken führen und kann auch dazu beitragen, Verkehr oder arbeitsbedingten Gefahren25,26,27 . Die vorliegende Studie folgt einem aMEG Ansatz, um die oszillierende Aktivität im Theta-Band und Synchronität zwischen executive Hauptbereiche mit ausgezeichneten zeitlicher Auflösung zu messen. Die Wirkung des Alkohols auf Theta-Aktivität und Co Oszillationen zwischen ACC und die LatPFC werden als eine Funktion der Konflikt hervorgerufen durch die Stroop-Interferenz-Aufgabe untersucht. Wir vermuten, dass erhöhte kognitive Anforderungen größere funktionale Synchronität zugeordnet sind und die Alkohol-induzierte Dysregulation der synchrone Aktivität von der medialen und lateralen präfrontalen Cortex Beeinträchtigungen der kognitiven Kontrolle unterliegt.

Protocol

Dieses experimentelle Protokoll wurde vom Komitee menschlichen Themen Schutz an der University of California, San Diego genehmigt. 1. menschliche Subjekte Rechtshänder Erwachsenen Probanden zu rekrutieren, ihre Zustimmung einholen und Bildschirm ihnen auf die Inklusion/Exklusion-Kriterien.Hinweis: In dieser Studie, zwanzig junge, gesunde Menschen (Durchschnittsalter ± Standardabweichung [SD] = 25,3 ± 4,4 Jahre) inkl. 8 Frauen wurden rekrutiert, in Maßen, die …

Representative Results

Verhaltens Ergebnisse deuten darauf hin, dass die Stroop-Aufgabe erfolgreich Antwort Störungen manipuliert, weil die Genauigkeit die niedrigste war und die Reaktionszeiten die längste unpassend Studien (Abbildung 6). Alkoholvergiftung Genauigkeit gesenkt, aber hatte keinen Einfluss auf die Reaktionszeiten18. Die räumlich-zeitliche Abfolge von Aktivitäten in Theta-Frequenz…

Discussion

Die multimodale bildgebendes Verfahren, die in dieser Studie verwendeten umfasst verteilten Quelle Modellierung des zeitlich präzise MEG Signals sowie räumliche Einschränkungen der inverse Schätzungen jedes Teilnehmers strukturellen MRT abgeleitet. AMEG Ansatz vereint die Stärken dieser Techniken, Einblicke in die räumlich-zeitliche Phasen der oszillierenden Dynamik und die langfristige Integration Gesichtskreises kognitive Kontrolle bieten. Diese Methode liefert höhere zeitliche Genauigkeit als andere bildgebende…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde durch die National Institutes of Health (R01-AA016624) unterstützt. Wir sind dankbar für ihre wichtigen Beiträge Dr. Sanja Kovacevic.

Materials

Elekta Neuromag Elekta Magnetoencephalography system
1.5 T GE EXCITE HG General Electric Magnetic Resonance Imaging scanner
Gold Cup Electrodes OpenBCI Electroencephalography electrodes for optional simultaneous EEG recording
Prep Check Impedance Meter General Devices Check electrode impedances
HPI Coils Elekta Head position indicator coils for co-registration
Alcotest Draeger Breathalyzer
Fiber Optic Response Pad Current Designs, Inc MEG-compatible response pad
Grey Goose Vodka Bacardi Vodka is used during the alcohol session
Orange Juice Naked Orange juice is used as the beverage during the placebo session as well as mixed with vodka during the alcohol session
Discover Drug Test Card American Screening Corp Multi-screen drug test
QED Saliva Alcohol Test OraSure Technologies Saliva alcohol test
Urine Hcg Test Strips Joylive Pregnancy test
Short Michigan Alcohol Screening Test Selzer et al., 1975 Alcoholism screening questionnaire
Zuckerman Sensation Seeking Scale Zuckerman, 1971 Questionnaire: disinhibitory, novelty-seeking, and socialization traits
Eysenck Impulsivity Inventory Eysenck & Eysenck, 1978 Questionnaire: impulsivity traits
Eysenck Personality Questionnaire Eysenck & Eysenck, 1975 Questionnaire: personality traits
Biphasic Alcohol Effects Scale  Martin et al., 1993 Questionnaire: subjective experience of the effects of alcohol

References

  1. Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J., Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition. 56 (2), 129-140 (2004).
  2. Shenhav, A., Cohen, J. D., Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience. 19 (10), 1286-1291 (2016).
  3. Walton, M. E., Croxson, P. L., Behrens, T. E., Kennerley, S. W., Rushworth, M. F. Adaptive decision making and value in the anterior cingulate cortex. Neuroimage. 36 Suppl 2, T142-T154 (2007).
  4. Heilbronner, S. R., Hayden, B. Y. Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annual Review of Neuroscience. 39, 149-170 (2016).
  5. Barbas, H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin. 52 (5), 319-330 (2000).
  6. Morecraft, R. J., Tanji, J., Vogt, B. A. . Cingulate neurobiology and disease. , 114-144 (2009).
  7. Botvinick, M. M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience. 7 (4), 356-366 (2007).
  8. Carter, C. S., van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience. 7 (4), 367-379 (2007).
  9. Buxton, R. B. . Introduction to Functional Magnetic Resonance Imaging. , (2002).
  10. Rickenbacher, E., Greve, D. N., Azma, S., Pfeuffer, J., Marinkovic, K. Effects of alcohol intoxication and gender on cerebral perfusion: an arterial spin labeling study. Alcohol. 45 (8), 725-737 (2011).
  11. Fell, J., Axmacher, N. The role of phase synchronization in memory processes. Nature Reviews Neuroscience. 12 (2), 105-118 (2011).
  12. Lachaux, J. P., Rodriguez, E., Martinerie, J., Varela, F. J. Measuring phase synchrony in brain signals. Human Brain Mapping. 8 (4), 194-208 (1999).
  13. Cavanagh, J. F., Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences. 18 (8), 414-421 (2014).
  14. Sauseng, P., Griesmayr, B., Freunberger, R., Klimesch, W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews. 34 (7), 1015-1022 (2010).
  15. Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K., Halgren, E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of Neuroscience. 25 (3), 604-613 (2005).
  16. Halgren, E., et al. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration. Neuropsychologia. 76, 108-124 (2015).
  17. Rosen, B. Q., Padovan, N., Marinkovic, K. Alcohol hits you when it is hard: Intoxication, task difficulty, and theta brain oscillations. Alcoholism: Clinical and Experimental Research. 40 (4), 743-752 (2016).
  18. Kovacevic, S., et al. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication. PLoS One. 7 (8), e43957 (2012).
  19. Marinkovic, K., Rosen, B. Q., Cox, B., Kovacevic, S. Event-related theta power during lexical-semantic retrieval and decision conflict is modulated by alcohol intoxication: Anatomically-constrained MEG. Frontiers in Psychology. 3 (121), (2012).
  20. Beaton, L. E., Azma, S., Marinkovic, K. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge. PLoS One. 13 (1), e0191200 (2018).
  21. Oscar-Berman, M., Marinkovic, K. Alcohol: effects on neurobehavioral functions and the brain. Neuropsychology Review. 17 (3), 239-257 (2007).
  22. Le Berre, A. P., Fama, R., Sullivan, E. V. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic Alcoholism: A Critical Review to Inform Future Research. Alcoholism: Clinical and Experimental Research. 41 (8), 1432-1443 (2017).
  23. Marinkovic, K., Rickenbacher, E., Azma, S., Artsy, E. Acute alcohol intoxication impairs top-down regulation of Stroop incongruity as revealed by blood oxygen level-dependent functional magnetic resonance imaging. Human Brain Mapping. 33 (2), 319-333 (2012).
  24. Marinkovic, K., Rickenbacher, E., Azma, S., Artsy, E., Lee, A. K. Effects of acute alcohol intoxication on saccadic conflict and error processing. Psychopharmacology (Berl). 230 (3), 487-497 (2013).
  25. Field, M., Wiers, R. W., Christiansen, P., Fillmore, M. T., Verster, J. C. Acute alcohol effects on inhibitory control and implicit cognition: implications for loss of control over drinking. Alcoholism: Clinical and Experimental Research. 34 (8), 1346-1352 (2010).
  26. Fillmore, M. T. Drug abuse as a problem of impaired control: current approaches and findings. Behavioral and Cognitive Neuroscience Reviews. 2 (3), 179-197 (2003).
  27. Hingson, R., Winter, M. Epidemiology and consequences of drinking and driving. Alcohol Reseach & Health. 27 (1), 63-78 (2003).
  28. Selzer, M. L., Vinokur, A., Van Rooijen, L. A self-administered Short Michigan Alcoholism Screening Test (SMAST). Journal of Studies on Alcohol. 36 (1), 117-126 (1975).
  29. Babor, T., Higgins-Biddle, J. S., Saunders, J. B., Monteiro, M. G. . AUDIT: The Alcohol use disorders identification test: Guidelines for use in primary care. , (2001).
  30. Rice, J. P., et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcoholism: Clinical and Experimental Research. 19 (4), 1018-1023 (1995).
  31. Eysenck, H. J., Eysenck, S. B. G. . Manual of the Eysenck Personality Questionnaire. , (1975).
  32. Eysenck, S. B., Eysenck, H. J. Impulsiveness and venturesomeness: their position in a dimensional system of personality description. Psychological Reports. 43 (3 Pt 2), 1247-1255 (1978).
  33. Maltzman, I., Marinkovic, K., Begleiter, H., Kissin, B. . The Pharmacology of Alcohol and Alcohol Dependence. , 248-306 (1996).
  34. Martin, C. S., Earleywine, M., Musty, R. E., Perrine, M. W., Swift, R. M. Development and validation of the Biphasic Alcohol Effects Scale. Alcoholism: Clinical and Experimental Research. 17 (1), 140-146 (1993).
  35. Liu, H., Tanaka, N., Stufflebeam, S., Ahlfors, S., Hamalainen, M. Functional Mapping with Simultaneous MEG and EEG. Journal of Visualized Experiments. (40), (2010).
  36. Lee, A. K., Larson, E., Maddox, R. K. Mapping cortical dynamics using simultaneous MEG/EEG and anatomically-constrained minimum-norm estimates: an auditory attention example. Journal of Visualized Experiments. (68), e4262 (2012).
  37. Balderston, N. L., Schultz, D. H., Baillet, S., Helmstetter, F. J. How to detect amygdala activity with magnetoencephalography using source imaging. Journal of Visualized Experiments. (76), (2013).
  38. Breslin, F. C., Kapur, B. M., Sobell, M. B., Cappell, H. Gender and alcohol dosing: a procedure for producing comparable breath alcohol curves for men and women. Alcoholism: Clinical and Experimental Research. 21 (5), 928-930 (1997).
  39. Marinkovic, K., Cox, B., Reid, K., Halgren, E. Head position in the MEG helmet affects the sensitivity to anterior sources. Neurology and Clinical Neurophysiology. , 30 (2004).
  40. Dale, A. M., Sereno, M. I. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience. 5, 162-176 (1993).
  41. Dale, A. M., Fischl, B., Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 9 (2), 179-194 (1999).
  42. Fischl, B., Sereno, M. I., Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 9 (2), 195-207 (1999).
  43. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomedical Engineering Online. 9, 45 (2010).
  44. Kybic, J., et al. A common formalism for the integral formulations of the forward EEG problem. IEEE Transactions on Medical Imaging. 24 (1), 12-28 (2005).
  45. Dale, A. M., et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 26 (1), 55-67 (2000).
  46. Marinkovic, K. Spatiotemporal dynamics of word processing in the human cortex. The Neuroscientist. 10 (2), 142-152 (2004).
  47. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience. , 156869 (2011).
  48. Delorme, A., Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods. 134, 9-21 (2004).
  49. Gramfort, A., et al. MNE software for processing MEG and EEG data. Neuroimage. 86, 446-460 (2014).
  50. Lin, F. H., et al. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain. Neuroimage. 23 (2), 582-595 (2004).
  51. Fischl, B., Sereno, M. I., Tootell, R. B., Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping. 8 (4), 272-284 (1999).
  52. Maris, E., Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods. 164 (1), 177-190 (2007).
  53. Marinkovic, K., et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron. 38 (3), 487-497 (2003).
  54. Nachev, P. Cognition and medial frontal cortex in health and disease. Current Opinion in Neurology. 19 (6), 586-592 (2006).
  55. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., Rushworth, M. F. Optimal decision making and the anterior cingulate cortex. Nature Neuroscience. 9 (7), 940-947 (2006).
  56. Aron, A. R., Robbins, T. W., Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences. 18 (4), 177-185 (2014).
  57. Erika-Florence, M., Leech, R., Hampshire, A. A functional network perspective on response inhibition and attentional control. Nature Communications. 5, 4073 (2014).
  58. D’Esposito, M., Postle, B. R. The cognitive neuroscience of working memory. Annual Review of Psychology. 66, 115-142 (2015).
  59. Hasselmo, M. E., Stern, C. E. Theta rhythm and the encoding and retrieval of space and time. Neuroimage. 85 Pt 2, 656-666 (2014).
  60. Womelsdorf, T., Johnston, K., Vinck, M., Everling, S. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the United States of America. 107 (11), 5248-5253 (2010).
  61. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences. 9 (10), 474-480 (2005).
  62. Canolty, R. T., et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 313 (5793), 1626-1628 (2006).
  63. Varela, F., Lachaux, J. P., Rodriguez, E., Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience. 2 (4), 229-239 (2001).
  64. Hanslmayr, S., et al. The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience. 20 (2), 215-225 (2008).
  65. Niendam, T. A., et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience. 12 (2), 241-268 (2012).
  66. Sadaghiani, S., D’Esposito, M. Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness. Cerebral Cortex. 25 (9), 2763-2773 (2015).
  67. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., Petersen, S. E. A dual-networks architecture of top-down control. Trends in Cognitive Sciences. 12 (3), 99-105 (2008).
  68. Bullmore, E., Sporns, O. The economy of brain network organization. Nature Reviews Neuroscience. 13 (5), 336-349 (2012).
  69. Fornito, A., Zalesky, A., Breakspear, M. The connectomics of brain disorders. Nature Reviews Neuroscience. 16 (3), 159-172 (2015).
  70. Anderson, B. M., et al. Functional imaging of cognitive control during acute alcohol intoxication. Alcoholism: Clinical and Experimental Research. 35 (1), 156-165 (2011).
  71. Kareken, D. A., et al. Family history of alcoholism interacts with alcohol to affect brain regions involved in behavioral inhibition. Psychopharmacology (Berl). 228 (2), 335-345 (2013).
  72. Schuckit, M. A., et al. fMRI differences between subjects with low and high responses to alcohol during a stop signal task. Alcoholism: Clinical and Experimental Research. 36 (1), 130-140 (2012).
  73. Nikolaou, K., Critchley, H., Duka, T. Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response. PLoS One. 8 (9), e76649 (2013).
  74. Gan, G., et al. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex. Biology Psychiatry. 76 (9), 698-707 (2014).
  75. Ehlers, C. L., Wills, D. N., Havstad, J. Ethanol reduces the phase locking of neural activity in human and rodent brain. Brain Research. 1450, 67-79 (2012).
  76. Goldstein, R. Z., Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience. 12 (11), 652-669 (2011).
check_url/kr/58839?article_type=t

Play Video

Cite This Article
Marinkovic, K., Beaton, L. E., Rosen, B. Q., Happer, J. P., Wagner, L. C. Disruption of Frontal Lobe Neural Synchrony During Cognitive Control by Alcohol Intoxication. J. Vis. Exp. (144), e58839, doi:10.3791/58839 (2019).

View Video