Summary

大鼠桶内皮层 7 t 的功能磁共振波谱在晶氏体活化过程中的应用

Published: February 08, 2019
doi:

Summary

通过血氧水平相关功能磁共振成像 (bold fmri) 检查相应的体感桶场皮层区域 (称为 s1bf) 是否正确激活后, 本研究的主要目的是量化乳酸含量在 7 t 的情况下, 局部质子磁共振波谱 (1h-mrs) 在活化大鼠大脑中的波动。

Abstract

核磁共振 (nmr) 光谱为测量体内和非侵入性的脑代谢物含量提供了机会。由于过去十年的技术发展和磁场强度的增加, 现在有可能在大鼠大脑中获得良好的体内分辨率谱。神经能量学 (大脑代谢的研究), 特别是不同细胞类型之间的代谢相互作用, 近年来引起了越来越多的兴趣。在这些代谢相互作用中, 神经元和星形胶质细胞之间存在乳酸穿梭性仍在争论中。因此, 在大鼠大脑活化模型中进行功能质子磁共振波谱 (1h-mrs) 和监测乳酸是非常有趣的。然而, 乳酸甲基谷第2峰与脂质共振峰重叠, 难以量化。下面描述的协议允许在激活的大脑区域监测代谢和乳酸的波动。通过晶须刺激获得大脑激活,相应的活性桶皮层进行 1 h-mrs, 其区域是通过血氧水平相关功能磁共振成像 (bold fmri) 检测的。所有步骤都有详细说明: 麻醉剂、线圈和序列的选择, 直接在磁铁中实现高效的晶须刺激, 以及数据处理。

Introduction

大脑拥有内在的机制, 允许调节其主要基质 (葡萄糖), 这既是因为它的贡献, 也是因为它的利用, 这取决于局部大脑活动的变化。虽然葡萄糖是大脑的主要能量底物, 但近年来进行的实验表明, 由星形胶质细胞产生的乳酸可以成为神经元的有效能量底物。这提出了在星形胶质细胞和神经元1之间的乳酸穿梭的假设。被称为 anls, 对于星形胶质细胞乳酸梭子 2,这一理论仍然引起了激烈的争论, 但这一理论导致了这样的建议, 即葡萄糖, 而不是直接进入神经元, 可能会进入星形胶质细胞, 在那里它被代谢为乳酸, 一种代谢物, 这是一种代谢物, 这是一种代谢产物。, 然后, 转移到神经元, 使用它作为有效的能量基板。如果这种穿梭物存在于体内, 它将产生几个重要的后果, 这既是为了了解功能性脑成像的基本技术 (正电子发射断层扫描 [pet]), 也是为了破译观察到的代谢改变在大脑疾病。

为了研究大脑代谢, 特别是神经元和星形胶质细胞之间的代谢相互作用, 有四种主要技术可供选择 (不包括微/纳米传感器): 自体摄影、pet、双光子荧光共聚焦显微镜和 mrs。自动摄影是最早提出的方法之一, 它提供了大脑切片中放射性 14c-2-脱氧葡萄糖的区域积累图像, 而 pet在体内产生的区域吸收放射性18的图像f-脱氧葡萄糖。它们都有在产生低空间分辨率图像的同时使用辐照分子的缺点。双光子显微镜提供荧光探针的细胞分辨率, 但通过组织进行光散射限制了成像深度。这三种技术以前曾被用于研究鼠在晶须刺激 3,4,5,6期间的神经能量.在体内mrs 具有无创和无放射性的双重优势, 任何大脑结构都可以探索。此外, mrs 可以在神经元激活过程中进行, 这是一种称为功能性 mrs (fmrs) 的技术, 最近在啮齿类动物得到了发展。因此, 提出了一种通过体内和非侵入性的 1 h-mrs 监测大脑活动过程中大脑代谢的方案。这一程序是在成年健康大鼠中描述的, 它们的大脑激活是通过在7t 磁共振 (mr) 成像仪中直接进行的空气吸泡晶须刺激获得的, 但可适用于转基因动物, 也可以适用于任何病理条件下.

Protocol

所有动物程序都是根据欧洲共同体理事会1986年11月24日指令 (86/609/eec) 的动物实验指南进行的。该议定书符合法国农业和森林部的道德准则, 并得到了地方道德委员会 (波尔多海洋 n°50112090-a) 的批准。 注: 在 mr 测量期间, 适当的麻醉和生理监测 (体温、呼吸速率) 是必不可少的要求。 1. 动物 使用体重在350至450克之间的雄性 wistar 大鼠。 保持在…

Representative Results

该方案允许量化代谢物在大脑激活过程中的波动, 这是通过直接在磁铁中的右晶须刺激获得的。 在本研究中, bold fmri 的总体目标是检查晶须刺激是否有效, 对激活的 s1bf 区域进行可视化, 并正确定位1h-frs 的体素。为晶须激活而构建的设备是有效的。事实上, 当使用自制的气泡系统刺激右晶须时, 在左桶皮层 (<strong class="xf…

Discussion

桶皮层, 也称为 s1bf 的体感皮层或桶场, 是一个区域内的皮质层 iv, 可以观察到使用细胞色素 c 氧化酶染色9, 它的组织是众所周知的, 因为它已被大量描述10,11。一个 vibrissa 连接到一个桶, 其中大约 19, 000个神经元被组织在一个专栏 12。威士忌到桶皮层的通路有几个优点。首先, 它可以通过使用与 mri 兼容的空气吹气系统?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 labex trail 赠款、anr-10-labx-57 和法国-瑞士 anr-fns 赠款的支持。提交人感谢 aurélien trotier 的技术支持。

Materials

0.5 mL syringe with needle Becton, Dickinson and Company, USA 2020-10 0.33 mm (29 G) x 12.7 mm
1H spectroscopy surface coil Bruker, Ettlingen, Germany T116344
7T Bruker Biospec system Bruker, Ettlingen, Germany 70/20 USR
Arduino Uno based pulsing device custom made
Atipamezole Vétoquinol, S.A., France V8335602 Antisedan, 4.28 mg
Breathing mask custom made
Eye ointment TVM laboratoire, France 40365 Ocry gel 10 g
Induction chamber custom made 30x17x15 cm
Inlet flexible pipe Gardena, Germany 1348-20 4.6-mm diameter, 3m long
Isoflurane pump, Model 100 series vaporizer, classic T3 Surgivet, Harvard Apparatus WWV90TT from OH 43017, U.S.A
Isoflurane, liquid for inhalation Vertflurane, Virbac, France QN01AB06 1000 mg/mL
KD Scientific syringe pump KD sientific, Holliston, USA Legato 110
LCModel software LCModel Inc., Ontario, Canada 6.2
Medetomidine hydrochloride Vétoquinol, S.A., France QN05CM91 Domitor, 1 mg/mL
Micropore roll of adhesive plaster 3M micropore, Minnesota, United States MI912
Micropore roll of adhesive plaster 3M micropore, Minnesota, United States MI925
Monitoring system of physiologic parameter SA Instruments, Inc, Stony Brook, NY, USA Model 1025
NaCl Fresenius Kabi, Germany B05XA03 0.9 % 250 mL
Outlet flexible pipe Gardena, Germany 1348-20 4.6-mm diameter, 4m long
Paravision software Bruker, Ettlingen, Germany 6.0.1
Peripheral intravenous catheter Terumo, Shibuya, Tokyo, Japon SP500930S 22 G x 1", 0.85×25 mm, 35 mL/min
Rat head coil Bruker, Ettlingen, Germany
Sodic heparin, injectable solution Choai, Sanofi, Paris, France B01AB01 5000 IU/mL
Solenoid control valves, plunger valve 2/2 way direct-acting Burkert, Germany 3099939 Model type 6013
Terumo 2 ml syringe Terumo, Shibuya, Tokyo, Japon SY243 with 21 g x 5/8" needle
Terumo 5 mL syringe Terumo, Shibuya, Tokyo, Japon 05SE1
Wistar RJ-Han rats Janvier Laboratories, France

References

  1. Pellerin, L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 55, 1251-1262 (2007).
  2. Pellerin, L., Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America. 91, 10625-10629 (1994).
  3. Cholet, N., et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. Journal of Cerebral Blood Flow & Metabolism. 21, 404-412 (2001).
  4. Voutsinos-Porche, B., et al. Glial Glutamate Transporters Mediate a Functional Metabolic Crosstalk between Neurons and Astrocytes in the Mouse Developing Cortex. Neuron. 37, 275-286 (2003).
  5. Zimmer, E. R., et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nature Neuroscience. 20 (3), 393-395 (2017).
  6. Haiss, F., et al. Improved in vivo two-photon imaging after blood replacement by perfluorocarbon. The Journal of Physiology. , (2009).
  7. Mullins, P. G. Towards a theory of functional magnetic resonance spectroscopy (fMRS): A meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scandinvian Journal of Psychology. 59, 91-103 (2018).
  8. Wong-Riley, M. T., Welt, C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proceedings of the National Academy of Sciences of the United States of America. 77, 2333-2337 (1980).
  9. Petersen, C. C. The functional organization of the barrel cortex. Neuron. 56, 339-355 (2007).
  10. Cox, S. B., Woolsey, T. A., Rovainen, C. M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. Journal of Cerebral Blood Flow & Metabolism. 13, 899-913 (1993).
  11. Feldmeyer, D. Excitatory neuronal connectivity in the barrel cortex. Frontiers in Neuroanatomy. 6, 24 (2012).
  12. Boussida, S., Traore, A. S., Durif, F. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study. PLoS One. 12, e0176512 (2017).
  13. Heinke, W., Koelsch, S. The effects of anesthetics on brain activity and cognitive function. Current Opinion in Anesthesiology. 18, 625-631 (2005).
  14. Horn, T., Klein, J. Lactate levels in the brain are elevated upon exposure to volatile anesthetics: a microdialysis study. Neurochemistry International. 57, 940-947 (2010).
  15. Boretius, S., et al. Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo. Neuroimage. 69, 244-255 (2013).
  16. Sinclair, M. D. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Canadian Veterinary Journal. 44, 885-897 (2003).
  17. Weber, R., et al. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage. 29, 1303-1310 (2006).
  18. Hartmann, M. J., Johnson, N. J., Towal, R. B., Assad, C. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. The Journal of Neuroscience. 23, 6510-6519 (2003).
  19. Prichard, J., et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proceedings of the National Academy of Sciences of the United States of America. 88, 5829-5831 (1991).
  20. Sappey-Marinier, D., et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism. 12, 584-592 (1992).
  21. Mazuel, L., et al. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS One. 12, e0174990 (2017).
  22. Castellano, G., et al. NAA and NAAG variation in neuronal activation during visual stimulation. Brazilian Journal of Medical and Biological Research. 45, 1031-1036 (2012).
  23. Sarchielli, P., et al. Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage. 24, 1025-1031 (2005).
  24. Baslow, M. H., Hrabe, J., Guilfoyle, D. N. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. Journal of Molecular Neuroscience. 32, 235-245 (2007).
  25. Mangia, S., Tkac, I. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. Journal of Molecular Neuroscience. 35, 245-248 (2008).
  26. Baslow, M. H., Hrabal, R., Guilfoyle, D. N. Response of the authors to the Letter by Silvia Mangia and Ivan Tkac. Journal of Molecular Neuroscience. 35, 247-248 (2008).
  27. Barros, L. F., Weber, B. CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. The Journal of Physiology. 596, 347-350 (2018).
  28. Bak, L. K., Walls, A. B. CrossTalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. The Journal of Physiology. 596, 351-353 (2018).
check_url/kr/58912?article_type=t

Play Video

Cite This Article
Blanc, J., Roumes, H., Mazuel, L., Massot, P., Raffard, G., Biran, M., Bouzier-Sore, A. Functional Magnetic Resonance Spectroscopy at 7 T in the Rat Barrel Cortex During Whisker Activation. J. Vis. Exp. (144), e58912, doi:10.3791/58912 (2019).

View Video